Enhanced thermal stability of the TiB2–ZrB2 composite ceramic based high temperature spectrally selective absorber coatings: Optical properties, failure analysis and chromaticity investigation

[1]  Xiao-Li Qiu,et al.  Structure, thermal stability and optical simulation of ZrB2 based spectrally selective solar absorber coatings , 2019, Solar Energy Materials and Solar Cells.

[2]  S. Lanceros‐Méndez,et al.  The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective absorbers upon their selectivity and thermal stability , 2019, Applied Surface Science.

[3]  Xiao-Li Qiu,et al.  Structure, thermal stability and chromaticity investigation of TiB2 based high temperature solar selective absorbing coatings , 2019, Solar Energy.

[4]  M. Takata,et al.  Solar selective absorbers based on semiconducting β-FeSi2 for high temperature solar-thermal conversion , 2018 .

[5]  H. Barshilia,et al.  Hafnium carbide based solar absorber coatings with high spectral selectivity , 2018, Solar Energy Materials and Solar Cells.

[6]  Baoling Huang,et al.  Efficient, Scalable, and High‐Temperature Selective Solar Absorbers Based on Hybrid‐Strategy Plasmonic Metamaterials , 2018 .

[7]  Xinbin Ma,et al.  Effect of zirconia morphology on sulfur-resistant methanation performance of MoO 3 /ZrO 2 catalyst , 2018 .

[8]  Hui-Xia Guo,et al.  Optical properties and failure analysis of ZrC-ZrOx ceramic based spectrally selective solar absorbers deposited at a high substrate temperature , 2018 .

[9]  Lei Wang,et al.  The investigation of thermal stability of Al/NbMoN/NbMoON/SiO 2 solar selective absorbing coating , 2017 .

[10]  Zhongfan Liu,et al.  Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion , 2017, Advanced materials.

[11]  E. Sani,et al.  Titanium diboride ceramics for solar thermal absorbers , 2017, 1803.06526.

[12]  Yong Zhang,et al.  Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating , 2017 .

[13]  F. Zhuge,et al.  High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity , 2017 .

[14]  Lixian Sun,et al.  The emergence of solar thermal utilization: Solar-driven steam generation , 2017 .

[15]  Wei-min Liu,et al.  Tribological behaviors of in situ TiB2 ceramic reinforced TiAl-based composites under sea water environment , 2017 .

[16]  Aiqin Wang,et al.  Enhanced thermal stability and spectral selectivity of SS/TiC-Y/Al2O3 spectrally selective solar absorber by thermal annealing , 2016 .

[17]  E. Sani,et al.  Process and composition dependence of optical properties of zirconium, hafnium and tantalum borides for solar receiver applications , 2016 .

[18]  Cheng Wang,et al.  Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers , 2016 .

[19]  Luo Ping,et al.  ZrB2-TiB2 Nanocomposite Powder Prepared by Mechanical Alloying , 2016 .

[20]  R. He,et al.  High temperature flexural strength and oxidation behavior of hot-pressed B4C–ZrB2 ceramics with various ZrB2 contents at 1000–1600 °C in air , 2016 .

[21]  W. Lu,et al.  High performance colored selective absorbers for architecturally integrated solar applications , 2015 .

[22]  R. Kundu,et al.  Structural and optical properties of barium titanate modified bismuth borate glasses , 2014 .

[23]  E. Sani,et al.  Tantalum diboride­based ceramics for bulk solar absorbers , 2014 .

[24]  S. Chakraborty,et al.  Mechanical and thermal properties of hot pressed ZrB2 system with TiB2 , 2014 .

[25]  David M. Bierman,et al.  Metallic Photonic Crystal Absorber‐Emitter for Efficient Spectral Control in High‐Temperature Solar Thermophotovoltaics , 2014 .

[26]  V. Sathe,et al.  Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses , 2014 .

[27]  Marco Meucci,et al.  Optical properties of boride ultrahigh-temperature ceramics for solar thermal absorbers , 2014 .

[28]  E. Sani,et al.  Porous and dense hafnium and zirconium ultra-high temperature ceramics for solar receivers , 2013 .

[29]  Elisa Sani,et al.  Suitability of ultra-refractory diboride ceramics as absorbers for solar energy applications , 2013 .

[30]  A. L. Ortiz,et al.  A study of the oxidation of ZrB2 powders during high-energy ball-milling in air , 2012 .

[31]  Bjørn Clausen,et al.  Measurement of thermal residual stresses in ZrB2–SiC composites , 2011 .

[32]  D. Alfano,et al.  Microstructural characterization of ZrB2-SiC based UHTC tested in the MESOX plasma facility , 2010 .

[33]  Timothy Nicholas Anderson,et al.  The effect of colour on the thermal performance of building integrated solar collectors , 2010 .

[34]  Jiecai Han,et al.  Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition , 2009 .

[35]  Ľ. Bača,et al.  Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors , 2008 .

[36]  L. Cindrella,et al.  The real utility ranges of the solar selective coatings , 2007 .

[37]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.

[38]  Z. Crnjak Orel,et al.  Spectrally selective solar absorbers in different non-black colours , 2004 .

[39]  J. F. Sullivan,et al.  Room-temperature oxidation of ultrathin TiB_2 films , 2002 .

[40]  M. G. Hutchins,et al.  Optical properties of higher and lower refractive index composites in solar selective coatings , 2002 .

[41]  W. Bennett,et al.  Multilayer Coatings and Optical Materials for Tuned Infrared Emittance and Thermal Control , 1998 .

[42]  D. Allred,et al.  Chemically vapor-deposited ZrB2 as a selective solar absorber☆ , 1981 .