Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs

5 Analysis on weighted graphs 23 5.1 Measures on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Discrete Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Green’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 Integration versus Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5 Eigenvalues of Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.6 Heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7 Co-area formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Research supported in part by NSF Grant No. DMS 98-01446 Supported by EPSRC Fellowship B/94/AF/1782 Supported in part by NSF Grant No. DMS 95-04834

[1]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[2]  Wendell H. Fleming,et al.  Normal and Integral Currents , 1960 .

[3]  George Polya,et al.  On the Eigenvalues of Vibrating Membranes(In Memoriam Hermann Weyl) , 1961 .

[4]  H. Fédérer Geometric Measure Theory , 1969 .

[5]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[6]  R. Osserman A survey of minimal surfaces , 1969 .

[7]  E. Giorgi,et al.  Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche , 1969 .

[8]  Robert C. Gunning,et al.  Problems in Analysis: A Symposium in Honor of Salomon Bochner (PMS-31) , 2015 .

[9]  E. Giusti,et al.  Harnack's inequality for elliptic differential equations on minimal surfaces , 1972 .

[10]  J. H. Michael,et al.  Sobolev and mean‐value inequalities on generalized submanifolds of Rn , 1973 .

[11]  J. Spruck,et al.  A correction to: Sobolev and isoperimetric inequalities for riemannian submanifolds , 1975 .

[12]  E. Lieb The Number of Bound States of One-Body Schroedinger Operators and the Weyl Problem (代数解析学の最近の発展) , 1979 .

[13]  Shing-Tung Yau,et al.  A lower bound for the heat kernel , 1981 .

[14]  Shiu-yuen Cheng,et al.  Heat kernel estimates and lower bound of eigenvalues , 1981 .

[15]  J. Dodziuk,et al.  Maximum principle for parabolic inequalities and the heat flow on open manifolds , 1983 .

[16]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[17]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[18]  A. Gushchin ON THE UNIFORM STABILIZATION OF SOLUTIONS OF THE SECOND MIXED PROBLEM FOR A PARABOLIC EQUATION , 1984 .

[19]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[20]  N. Varopoulos,et al.  Long range estimates for markov chains , 1985 .

[21]  Classes of Domains, Measures and Capacities in the Theory of Differentiable Functions , 1991 .

[22]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[23]  Alexander Grigor'yan,et al.  Heat kernel upper bounds on a complete non-compact manifold. , 1994 .

[24]  Shing-Tung Yau,et al.  Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.

[25]  Laurent Saloff-Coste,et al.  Isoperimetric Inequalities and Decay of Iterated Kernels for Almost-transitive Markov Chains , 1995, Combinatorics, Probability and Computing.

[26]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[27]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[28]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[29]  A. Grigor’yan Spectral Theory and Geometry: Estimates of heat kernels on Riemannian manifolds , 1999 .

[30]  I. Chavel,et al.  Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives , 2001 .

[31]  G. Carron,et al.  INÉGALITÉS ISOPÉRIMÉTRIQUES DE FABER-KRAHN ET CONSÉQUENCES , 2002 .