Transportation-information inequalities for Markov processes

In this paper, one investigates the transportation-information TcI inequalities: α(Tc(ν, μ)) ≤ I (ν|μ) for all probability measures ν on a metric space $${(\mathcal{X}, d)}$$, where μ is a given probability measure, Tc(ν, μ) is the transportation cost from ν to μ with respect to the cost function c(x, y) on $${\mathcal{X}^2}$$, I(ν|μ) is the Fisher–Donsker–Varadhan information of ν with respect to μ and α : [0, ∞) → [0, ∞] is a left continuous increasing function. Using large deviation techniques, it is shown that TcI is equivalent to some concentration inequality for the occupation measure of a μ-reversible ergodic Markov process related to I(·|μ). The tensorization property of TcI and comparisons of TcI with Poincaré and log-Sobolev inequalities are investigated. Several easy-to-check sufficient conditions are provided for special important cases of TcI and several examples are worked out.

[1]  Aldéric Joulin Concentration et fluctuations de processus stochastiques avec sauts , 2006 .

[2]  V. Bogachev,et al.  Integrability of Absolutely Continuous Transformations of Measures and Applications to Optimal Mass Transportation , 2006 .

[3]  Liming Wu,et al.  Essential spectral radius for Markov semigroups (I): discrete time case , 2004 .

[4]  Liming Wu Uniformly Integrable Operators and Large Deviations for Markov Processes , 2000 .

[5]  S. Bobkov,et al.  Hypercontractivity of Hamilton-Jacobi equations , 2001 .

[6]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[7]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[8]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[9]  王 风雨 Functional inequalities, Markov semigroups and spectral theory , 2005 .

[10]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[11]  A. Guillin,et al.  Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.

[12]  Liming Wu A deviation inequality for non-reversible Markov processes , 2000 .

[13]  Michel Ledoux Transportation cost inequalities , 2005 .

[14]  C. Villani Topics in Optimal Transportation , 2003 .

[15]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[16]  Ioannis K. Argyros,et al.  OF PURE AND APPLIED MATHEMATICS , 2003 .

[17]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[18]  C. Villani,et al.  Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .

[19]  P. Lezaud Chernoff and Berry-Esséen inequalities for Markov processes , 2001 .

[20]  N. Gozlan,et al.  A large deviation approach to some transportation cost inequalities , 2005, math/0510601.

[21]  K. Marton A measure concentration inequality for contracting markov chains , 1996 .

[22]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[23]  Convex concentration inequalities and forward-backward stochastic calculus , 2006 .

[24]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[25]  Liming Wu Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems , 2001 .

[26]  N. Gozlan Characterization of Talagrand's like transportation-cost inequalities on the real line , 2006, math/0608241.

[27]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[28]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[29]  Extension du théorème de Cameron-Martin aux translations aléatoires. II. Intégrabilité des densités , 2003 .

[30]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[31]  Uniqueness of Nelsons diffusions , 1999 .

[32]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[33]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[34]  A. Eberle Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators , 2000 .

[35]  Mu-Fa Chen Eigenvalues, inequalities and ergodic theory , 2000 .

[36]  P. Cattiaux,et al.  DEVIATION BOUNDS FOR ADDITIVE FUNCTIONALS OF MARKOV PROCESSES , 2006, math/0603021.

[37]  M. Ledoux The concentration of measure phenomenon , 2001 .

[38]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[39]  The Monge-Kantorovitch Problem and Monge-Ampere Equation on Wiener Space , 2003, math/0306323.

[40]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[41]  Patrick Cattiaux,et al.  On quadratic transportation cost inequalities , 2006 .

[42]  Spectral gap of positive operators and applications , 2000 .

[43]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[44]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[45]  A. Joulin A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature , 2009, 0906.2280.

[46]  Feng-Yu Wang,et al.  Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .