Biodegradable implants in traumatology: a review on the state-of-the-art

Up to now the internal fixation of fractured bones and joints has been managed by metal implants. There are certain associated disadvantages: the mechanical properties of the metals are stronger than those of cortical bone (“stress-protection”); the removal of the implants requires a second operation; an increasing number of patients are confronted with problems of sensitivity to metal components of the implants, especially nickel. About 40 different biodegradable polymers, copolymers and composites have been developed as substitutes for metal implants in internal fracture fixation. The early experimental and clinical results demonstrate their limitations. From the current point of view, it is not possible to transfer the designs and assembling principles of metal implants in orthopaedic surgery to biodegradable polymers. The attempt to simply mimic metal implants in polymers is condemned to fail from the very beginning. This is a review of the literature and of our first 100 patients operated on using implants made of self-reinforced polyglycolide acid and polydioxanone. The main difficulty with the material is the loss of stiffness in a time interval which is not long enough to guarantee bone healing. The development of a sterile sinus over the site of implantation is a problem also reported by other groups. Certain additives have to be inserted into the polymers to make them visible on conventional X-radiographs. Despite these drawbacks, however, there are indications for the isolated or adjuvant implantation of biodegradable materials. They could be employed in the treatment of osteochondral fractures and other defined injuries. The available literature on these indications will be discussed. A standardized set of possible indications for the use of different biodegradable devices in orthopaedic surgery is presented as are clear contraindications for their use at the present time. For the future, fixation devices adapted to the characteristic properties of polymers and adjusted to specific therapeutic problems will have to be developed.

[1]  G. Boering,et al.  Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation. , 1987, Biomaterials.

[2]  S L Woo,et al.  An interdisciplinary approach to evaluate the effect of internal fixation plate on long bone remodeling. , 1977, Journal of biomechanics.

[3]  G. Boering,et al.  Resorbable poly(L-lactide) plates and screws for the fixation of zygomatic fractures. , 1987, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[4]  O. Böstman,et al.  Ankle fractures treated using biodegradable internal fixation. , 1989, Clinical orthopaedics and related research.

[5]  J M Brady,et al.  Resorption rate, route, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat. , 1973, Journal of biomedical materials research.

[6]  V. Barranco,et al.  Eczematous dermatitis from nickel. , 1972, JAMA.

[7]  S. Woo,et al.  A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. , 1976, The Journal of bone and joint surgery. American volume.

[8]  S. Santavirta,et al.  Immune response to polyglycolic acid implants. , 1990, The Journal of bone and joint surgery. British volume.

[9]  O. Illi,et al.  Biodegradable implant materials in fracture fixation. , 1992, Clinical materials.

[10]  K C Pani,et al.  Polylactic acid for surgical implants , 1966, Archives of surgery.

[11]  L. Claes,et al.  Mechanical characterization of biodegradable implants. , 1992, Clinical materials.

[12]  G. Hierholzer,et al.  Severely comminuted femoral shaft fractures: Treatment by bridging-plate osteosynthesis , 2004, Archives of orthopaedic and traumatic surgery.

[13]  D. E. Cutright,et al.  Histologic comparison of polylactic and polyglycolic acid sutures. , 1971, Oral surgery, oral medicine, and oral pathology.

[14]  A. Magoun,et al.  A biologic comparison of polyglactin 910 and polyglycolic acid synthetic absorbable sutures. , 1975, Surgery, gynecology & obstetrics.

[15]  B. Gay,et al.  [Animal experiment studies on the use of absorbable polydioxanone (PDS) screws in osteosynthesis]. , 1985, Der Unfallchirurg.

[16]  P. Ring,et al.  Osteosarcoma in association with total hip replacement , 1984, The Journal of bone and joint surgery. British volume.

[17]  W. J. Larson,et al.  Degradation rates of polymers and copolymers of polylactic and polyglycolic acids. , 1974, Oral surgery, oral medicine, and oral pathology.

[18]  E. Hirvensalo Forty-one cases of severe ankle fractures , 1989 .

[19]  Y. Ikada,et al.  Bioabsorption of polylactides with different molecular properties. , 1989, Journal of biomedical materials research.

[20]  P. Törmälä,et al.  Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. , 1992, Clinical materials.

[21]  A. Mckenzie,et al.  Urticaria after insertion of Smith-Petersen Vitallium nail. , 1967, British medical journal.

[22]  J. Blamoutier,et al.  Dermatitis due to orthopaedic implants. A review of the literature and report of three cases. , 1987, The Journal of bone and joint surgery. American volume.

[23]  J. V. van Horn,et al.  Malignant epithelioid hemangioendothelioma at the site of a hip prosthesis. , 1988, Acta orthopaedica Scandinavica.

[24]  S. Seitsalo Finnish Orthopedic Association. Kuusamo, April 23-27, 1990. Abstracts. , 1990, Acta orthopaedica Scandinavica. Supplementum.

[25]  F. Schildberg,et al.  [The PDS tension band--a new method of early functional treatment of surgically repaired ligament rupture of the upper ankle joint]. , 1987, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[26]  W. Ruf,et al.  [Tension fixation of rupture of the symphysis with woven polydioxanone sutures]. , 2008, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[27]  J O Hollinger,et al.  Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). , 1983, Journal of biomedical materials research.

[28]  F. Sigurdsson,et al.  Recovery of diaphyseal bone strength after rigid internal plate fixation. An experimental study in the rabbit. , 1980, Acta orthopaedica Scandinavica.

[29]  Ye-Soo Park,et al.  Refracture of Bones of the Forearm after Plate Removal , 1993 .

[30]  O. Nilsson,et al.  Stress shielding by rigid fixation studied in osteotomized rabbit tibiae. , 1989, Acta orthopaedica Scandinavica.

[31]  [Course of trajectories in compression plate osteosynthesis and its biomechanic effects]. , 1971, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[32]  K. Rehm,et al.  Das PDS-augmentierte Patellarsehnentransplantat zur Rekonstruktion des vorderen Kreuzbandes am Schafsknie , 1989 .

[33]  W. Link,et al.  Osteochondrale Frakturen am Kniegelenk — Refixation mit Polydioxanon , 1989 .

[34]  Fred Leonard,et al.  Polylactic Acid for Surgical Implants , 1966 .

[35]  G. Finerman,et al.  Distal metaphyseal tibial nonunion. Deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (hBMP). , 1990, Clinical orthopaedics and related research.

[36]  O. Böstman,et al.  Biodegradable internal fixation for malleolar fractures. A prospective randomised trial. , 1987, The Journal of bone and joint surgery. British volume.

[37]  K. Rehm,et al.  Biomechanische Untersuchungen vom resorbierbaren Bandersatz und deren klinische Bedeutung , 1984 .

[38]  O. Böstman,et al.  BIODEGRADABLE IMPLANTS IN FRACTURE FIXATION: EARLY RESULTS OF TREATMENT OF FRACTURES OF THE ANKLE , 1985, The Lancet.

[39]  D H Riddick,et al.  Comparison of polyglactic and polyglycolic acid sutures in reproductive tissue. , 1977, Fertility and sterility.

[40]  J. Brostoff,et al.  Metal sensitivity in patients with joint replacement arthroplasties. , 1975, British medical journal.

[41]  O. Böstman,et al.  Transphyseal fracture fixation using biodegradable pins. , 1989, The Journal of bone and joint surgery. British volume.

[42]  C. Krettek,et al.  [Distal radius fracture. Fracture stabilization with biodegradable osteosynthesis pins (Biofix). Experimental studies and initial clinical experiences]. , 1989, Der Unfallchirurg.

[43]  D. E. Cutright,et al.  A biodegradable intraosseous appliance in the treatment of mandibular fractures. , 1972, Journal of oral surgery.

[44]  O. Böstman,et al.  Degradable polyglycolide rods for the internal fixation of displaced bimalleolar fractures , 2004, International Orthopaedics.

[45]  G. Muhr,et al.  [Semirigid plate osteosyntheses using absorbable polymers as temporary implants. II. Animal experiment studies]. , 1987, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[46]  E. Hirvensalo Fracture fixation with biodegradable rods. Forty-one cases of severe ankle fractures. , 1989, Acta orthopaedica Scandinavica.

[47]  A. Anscombe,et al.  The use of a new absorbable suture material (polyglycolic acid) in general surgery , 1970, The British journal of surgery.

[48]  J. Merrett,et al.  Nickel, hands and hip prostheses , 1981, The British journal of dermatology.

[49]  W. Ruf,et al.  [The stabilization of malleolar fractures and flake injuries using absorbable polyglycolide pins (Biofix)]. , 1990, Unfallchirurgie.

[50]  K. Diehl,et al.  [Capsular ligament surgery of the knee joint with resorbable materials. 5-year clinical experience with Vicryl and PDS ligaments]. , 2008, Zeitschrift für Orthopädie und ihre Grenzgebiete.

[51]  G. Boering,et al.  Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation. , 1987, Biomaterials.

[52]  A. Tonino,et al.  The clinical use of plastic plates for osteosynthesis in human fractures , 1987 .

[53]  L. Claes,et al.  [Resorbable implants for refixation of osteochondral fragments in joint surfaces]. , 1986, Aktuelle Traumatologie.

[54]  T. Lind,et al.  Fracture stage 4 of the lateral talar dome treated arthroscopically using Biofix for fixation. , 1990, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[55]  C L Davidson,et al.  Protection from stress in bone and its effects. Experiments with stainless steel and plastic plates in dogs. , 1976, The Journal of bone and joint surgery. British volume.

[56]  P. Benum,et al.  The stress-protecting effect of metal plates on the intact rabbit tibia. , 1983, Acta orthopaedica Scandinavica.

[57]  J. Scully,et al.  Influence of polylactic acid mesh on the incidence of localized osteitis. , 1983, Oral surgery, oral medicine, and oral pathology.

[58]  Haas Hg PDS splint in the treatment of fractures , 1986 .

[59]  P. Deluca,et al.  Refracture of bones of the forearm after the removal of compression plates. , 1988, The Journal of bone and joint surgery. American volume.