Operator-based robust nonlinear control system design for MIMO nonlinear plants with unknown coupling effects

In this article, operator-based robust nonlinear control system design for multi-input multi-output (MIMO) plants with unknown coupling effects is considered. That is, by using operator-based robust nonlinear control design, coupling effects existing in the MIMO nonlinear plants can be decoupled based on a feedback design and robust right coprime factorisation approach, the coupling effects caused by controllers and plant outputs can be stabilised by using definition of Lipschitz operator and contraction mapping theorem, and output tracking performance can be realised by a tracking design scheme. Finally, a simulation example about temperature control process of 3-input/3-output aluminum plate is given to support the theoretical analysis.

[1]  Alfonso Baños Stabilization of nonlinear systems based on a generalized Bézout identity , 1996, Autom..

[2]  Guanrong Chen,et al.  Robust right coprime factorization and robust stabilization of nonlinear feedback control systems , 1998, IEEE Trans. Autom. Control..

[3]  Guisheng Zhai,et al.  On practical asymptotic stabilizability of switched affine systems , 2006 .

[4]  Madanpal S. Verma,et al.  Coprime fractional representations and stability of non-linear feedback systems , 1988 .

[5]  Akira Inoue,et al.  Operator-based non-linear vibration control system design of a flexible arm with piezoelectric actuator , 2008 .

[6]  John B. Moore,et al.  On the Youla-Kucera parametrization for nonlinear systems , 1990 .

[7]  Akira Inoue,et al.  Robust non-linear control and tracking design for multi-input multi-output non-linear perturbed plants , 2009 .

[8]  Rui J. P. de Figueiredo,et al.  Nonlinear Feedback Control Systems: An Operator Theory Approach , 1993 .

[9]  A. Banos Parametrization of nonlinear stabilizing controllers: the observer-controller configuration , 1998, IEEE Trans. Autom. Control..

[10]  Brian D. O. Anderson,et al.  Coprimeness properties of nonlinear fractional system realizations , 1998 .

[11]  Arjan van der Schaft,et al.  The class of stabilizing nonlinear plant controller pairs , 1996, IEEE Trans. Autom. Control..

[12]  Akira Inoue,et al.  Operator-based nonlinear feedback control design using robust right coprime factorization , 2006, IEEE Transactions on Automatic Control.

[13]  J. Hammer Internally stable nonlinear systems with disturbances: a parameterization , 1994, IEEE Trans. Autom. Control..

[14]  Akira Inoue,et al.  Networked non-linear control for an aluminum plate thermal process with time-delays , 2008, Int. J. Syst. Sci..