A sweeping process approach to inelastic contact problems with general inertia operators

The dynamics of systems with a finite number of degrees of freedom and nontrivial inertia matrix which are submitted to a single perfect purely inelastic unilateral constraint is studied. By adopting the measure differential formulation of J.J. Moreau, a velocity-based time-stepping method is developed, reminiscent of the catching-up algorithm for sweeping processes. It is shown that the numerical solutions converge to a solution of the problem, under a weaker assumption on the constraint as compared to position-based methods.

[1]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[2]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[3]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .

[4]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[5]  C. Castaing,et al.  Evolution equations governed by the sweeping process , 1993 .

[6]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[7]  Giuseppe Buttazzo,et al.  On the approximation of the elastic bounce problem on Riemannian manifolds , 1983 .

[8]  J. Moreau Numerical Dynamics of Granular Materials , 2002 .

[9]  Aldo Bressan Questioni di regolarità e di unicità del moto in presenza di vincoli olonomi unilaterali , 1959 .

[10]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[11]  Danilo Percivale,et al.  Uniqueness in the elastic bounce problem, II , 1985 .

[12]  Laetitia Paoli,et al.  Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[14]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .