Disruption of a dopamine receptor complex amplifies the actions of cocaine

[1]  F. Leslie,et al.  Adolescent Maturation of Dopamine D1 and D2 Receptor Function and Interactions in Rodents , 2016, PloS one.

[2]  J. Nobrega,et al.  Rapid anti-depressant and anxiolytic actions following dopamine D1–D2 receptor heteromer inactivation , 2015, European Neuropsychopharmacology.

[3]  C. Chapman,et al.  Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex , 2015, PloS one.

[4]  J. Javitch,et al.  Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse , 2015, The Journal of comparative neurology.

[5]  M. Wolf,et al.  Multiple faces of BDNF in cocaine addiction , 2015, Behavioural Brain Research.

[6]  S. George,et al.  Regulation of c-fos expression by the dopamine D1-D2 receptor heteromer , 2015, Neuroscience.

[7]  B. O'dowd,et al.  A peptide targeting an interaction interface disrupts the dopamine D1‐D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  J. Lanciego,et al.  CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum , 2014, Experimental Neurology.

[9]  D. Sibley,et al.  Evidence against dopamine D1/D2 receptor heteromers , 2014, Molecular Psychiatry.

[10]  J. Ruffle Molecular neurobiology of addiction: what’s all the (Δ)FosB about? , 2014, The American journal of drug and alcohol abuse.

[11]  R. Mailman,et al.  Dopamine D1 Receptor Signaling: Does GαQ–Phospholipase C Actually Play a Role? , 2014, The Journal of Pharmacology and Experimental Therapeutics.

[12]  E. Nestler,et al.  Threonine 149 Phosphorylation Enhances ΔFosB Transcriptional Activity to Control Psychomotor Responses to Cocaine , 2014, The Journal of Neuroscience.

[13]  M. Krawczyk,et al.  Dopamine decreases NMDA currents in the oval bed nucleus of the stria terminalis of cocaine self-administering rats , 2014, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[14]  S. George,et al.  Dopamine D1-D2 Receptor Heteromer Regulates Signaling Cascades Involved in Addiction: Potential Relevance to Adolescent Drug Susceptibility , 2014, Developmental Neuroscience.

[15]  S. Lammel,et al.  Reward and aversion in a heterogeneous midbrain dopamine system , 2014, Neuropharmacology.

[16]  E. Nestler,et al.  ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli , 2013, Journal of Neuroscience.

[17]  T. Sotnikova,et al.  D1 Dopamine Receptor Coupling to PLCβ Regulates Forward Locomotion in Mice , 2013, The Journal of Neuroscience.

[18]  B. O'dowd,et al.  Enhanced Brain-Derived Neurotrophic Factor Signaling in the Nucleus Accumbens of Juvenile Rats , 2013, Developmental Neuroscience.

[19]  D. Sibley,et al.  D1-D2 Dopamine Receptor Synergy Promotes Calcium Signaling via Multiple Mechanisms , 2013, Molecular Pharmacology.

[20]  M. Marinelli,et al.  Adolescents Are More Vulnerable to Cocaine Addiction: Behavioral and Electrophysiological Evidence , 2013, The Journal of Neuroscience.

[21]  Mark J. Thomas,et al.  Behavioral and Structural Responses to Chronic Cocaine Require a Feedforward Loop Involving ΔFosB and Calcium/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell , 2013, The Journal of Neuroscience.

[22]  B. O'dowd,et al.  A physiological role for the dopamine D5 receptor as a regulator of BDNF and Akt signalling in rodent prefrontal cortex. , 2013, The international journal of neuropsychopharmacology.

[23]  Xuechu Zhen,et al.  SKF83959 Is a Potent Allosteric Modulator of Sigma-1 Receptor , 2013, Molecular Pharmacology.

[24]  C. Gerfen,et al.  Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens , 2012, Front. Neural Circuits.

[25]  B. O'dowd,et al.  Reduced striatal dopamine D1–D2 receptor heteromer expression and behavioural subsensitivity in juvenile rats , 2012, Neuroscience.

[26]  M. Marinelli,et al.  Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults. , 2012, Journal of neurophysiology.

[27]  B. O'dowd,et al.  Dopamine D1–D2 Receptor Heteromer in Dual Phenotype GABA/Glutamate-Coexpressing Striatal Medium Spiny Neurons: Regulation of BDNF, GAD67 and VGLUT1/2 , 2012, PloS one.

[28]  B. O'dowd,et al.  Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. , 2012, Biochemical and biophysical research communications.

[29]  B. O'dowd,et al.  The Dopamine D1–D2 Receptor Heteromer in Striatal Medium Spiny Neurons: Evidence for a Third Distinct Neuronal Pathway in Basal Ganglia , 2011, Front. Neuroanat..

[30]  H. Anisman,et al.  Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects , 2010, Nature Medicine.

[31]  Murtaza Z Mogri,et al.  Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward , 2010, Science.

[32]  P. Fletcher,et al.  The Dopamine D1-D2 Receptor Heteromer Localizes in Dynorphin/Enkephalin Neurons , 2010, The Journal of Biological Chemistry.

[33]  J. McGinty,et al.  Brain-derived neurotrophic factor and cocaine addiction , 2010, Brain Research.

[34]  J. Anker,et al.  Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats , 2010, Psychopharmacology.

[35]  B. O'dowd,et al.  Activation of calcium/calmodulin-dependent protein kinase IIα in the striatum by the heteromeric D1-D2 dopamine receptor complex , 2010, Neuroscience.

[36]  B. O'dowd,et al.  Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth , 2009, Proceedings of the National Academy of Sciences.

[37]  B. O'dowd,et al.  Calcium Signaling by Dopamine D5 Receptor and D5-D2 Receptor Hetero-Oligomers Occurs by a Mechanism Distinct from That for Dopamine D1-D2 Receptor Hetero-Oligomers , 2009, Molecular Pharmacology.

[38]  S. Izenwasser,et al.  Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats , 2009, Behavioural Brain Research.

[39]  S. Izenwasser,et al.  Sensitivity to cocaine conditioned reward depends on sex and age , 2009, Pharmacology Biochemistry and Behavior.

[40]  D. Sibley,et al.  D5 Dopamine Receptors are Required for Dopaminergic Activation of Phospholipase C , 2009, Molecular Pharmacology.

[41]  A. Nishi,et al.  Regulation of DARPP‐32 phosphorylation by three distinct dopamine D1‐like receptor signaling pathways in the neostriatum , 2008, Journal of neurochemistry.

[42]  J. Girault,et al.  Opposing Patterns of Signaling Activation in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons in Response to Cocaine and Haloperidol , 2008, The Journal of Neuroscience.

[43]  S. Andersen,et al.  Delayed extinction and stronger reinstatement of cocaine conditioned place preference in adolescent rats, compared to adults. , 2008, Behavioral neuroscience.

[44]  B. O'dowd,et al.  D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum , 2007, Proceedings of the National Academy of Sciences.

[45]  A. Reiner,et al.  Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling , 2006, Journal of Chemical Neuroanatomy.

[46]  C. Kirstein,et al.  Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. , 2006, European journal of pharmacology.

[47]  E. Nestler,et al.  The Mesolimbic Dopamine Reward Circuit in Depression , 2006, Biological Psychiatry.

[48]  E. Nestler The Neurobiology of Cocaine Addiction , 2005, Science & practice perspectives.

[49]  S. M. Anderson,et al.  Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. , 2005, Pharmacology & therapeutics.

[50]  B. O'dowd,et al.  Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal* , 2004, Journal of Biological Chemistry.

[51]  Henk J Groenewegen,et al.  Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. , 2004, Journal of neurophysiology.

[52]  J. Waddington,et al.  SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography. , 2004, European journal of pharmacology.

[53]  R. Baldessarini,et al.  Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. , 2003, European Journal of Pharmacology.

[54]  Xuechu Zhen,et al.  SKF83959 selectively regulates phosphatidylinositol‐linked D1 dopamine receptors in rat brain , 2003, Journal of neurochemistry.

[55]  Wenxiao Lu,et al.  D1 dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures , 2002, Journal of neurochemistry.

[56]  S. Panchalingam,et al.  Optimized Binding of [35S]GTPγS to Gq-Like Proteins Stimulated with Dopamine D1-Like Receptor Agonists , 2000, Neurochemical Research.

[57]  Hans Forssberg,et al.  Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons , 2000, Nature Neuroscience.

[58]  B. Bloch,et al.  Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum , 2000, The Journal of comparative neurology.

[59]  M. Greenberg,et al.  FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Kelz,et al.  Chronic Fos-Related Antigens: Stable Variants of ΔFosB Induced in Brain by Chronic Treatments , 1997, The Journal of Neuroscience.

[61]  J. Waddington,et al.  Pharmacological characterization of behavioural responses to SK&F 83959 in relation to ‘D1‐like’ dopamine receptors not linked to adenylyl cyclase , 1995, British journal of pharmacology.

[62]  Jack Durell,et al.  National Institute on Drug Abuse , 2020, Definitions.

[63]  Mark J. Thomas,et al.  Behavioral and Structural Responses to Chronic Cocaine Require a Feedforward Loop Involving FosB and Calcium / Calmodulin-Dependent Protein Kinase II in the Citation , 2013 .

[64]  Zhe-yu Chen,et al.  The role of BDNF in depression on the basis of its location in the neural circuitry , 2011, Acta Pharmacologica Sinica.

[65]  K. Frantz,et al.  Age- and sex-dependent amphetamine self-administration in rats , 2007, Psychopharmacology.

[66]  J. C. Stoof,et al.  The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors. , 1999, European journal of pharmacology.