Seizure-like afterdischarges simulated in a model neuron

To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a “glial-endothelial” buffer system. Ion channels for Na+, K+, Ca2+ and Cl−, ion antiport 3Na/Ca, and “active” ion pumps were represented in the neuron membrane. The glia had “leak” conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (INa,P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient INa,P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue.

[1]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. , 1998, Journal of neurophysiology.

[2]  R. Köhling,et al.  Differential Involvement of L-Type Calcium Channels in Epileptogenesis of Rat Hippocampal Slices during Ontogenesis , 2000, Neurobiology of Disease.

[3]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[4]  J B Ranck,et al.  Potassium accumulation in interstitial space during epileptiform seizures. , 1970, Experimental neurology.

[5]  S. W. Kuffler,et al.  Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. , 1966, Journal of neurophysiology.

[6]  W H Calvin,et al.  Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat. , 1976, Journal of neurophysiology.

[7]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[8]  Crill We,et al.  Role of persistent inward and outward membrane currents in epileptiform bursting in mammalian neurons. , 1986 .

[9]  G. Somjen,et al.  Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. , 1985, Journal of neurophysiology.

[10]  A. Konnerth,et al.  Spontaneous epileptiform activity of ca1 hippocampal neurons in low extracellular calcium solutions , 2004, Experimental Brain Research.

[11]  J. Phillis,et al.  Potassium-evoked efflux of transmitter amino acids and purines from rat cerebral cortex , 1993, Brain Research Bulletin.

[12]  M. Courtemanche,et al.  Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. , 1998, The American journal of physiology.

[13]  B. Bean,et al.  Ionic Mechanisms of Burst Firing in Dissociated Purkinje Neurons , 2003, The Journal of Neuroscience.

[14]  G. Somjen,et al.  Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. , 2000, Journal of neurophysiology.

[15]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[16]  Marcello Massimini,et al.  Spatial Buffering during Slow and Paroxysmal Sleep Oscillations in Cortical Networks of Glial Cells In Vivo , 2002, The Journal of Neuroscience.

[17]  W. Kamphuis,et al.  Current source density of sustained potential shifts associated with electrographic seizures and with spreading depression in rat hippocampus , 1992, Brain Research.

[18]  F. L. D. Silva,et al.  Excitatory ionic currents and calcium extrusion in hippocampal neurons in epilepsy , 2007 .

[19]  D. Attwell,et al.  Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake , 1990, Nature.

[20]  D. Fujikawa,et al.  In vivo elevation of extracellular potassium in the rat amygdala increases extracellular glutamate and aspartate and damages neurons , 1996, Neuroscience.

[21]  H. Haas,et al.  Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission , 1982, Nature.

[22]  S L SHERWOOD,et al.  Effects of calcium and potassium injected into the cerebral ventricles of the cat , 1957, The Journal of physiology.

[23]  Betz Al,et al.  Epithelial properties of brain capillary endothelium. , 1985 .

[24]  Florin Amzica,et al.  Neuronal and Glial Membrane Potentials during Sleep and Paroxysmal Oscillations in the Neocortex , 2000, The Journal of Neuroscience.

[25]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[26]  G. Somjen Ion Regulation in the Brain: Implications for Pathophysiology , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[27]  Zheng-Xiong Xi,et al.  The Origin and Neuronal Function of In Vivo Nonsynaptic Glutamate , 2002, The Journal of Neuroscience.

[28]  G H Glaser,et al.  Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. , 1968, Experimental neurology.

[29]  Suhita Nadkarni,et al.  Dressed neurons: modeling neural–glial interactions , 2004, Physical biology.

[30]  R. Traub,et al.  Model of synchronized epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Role of spontaneous EPSPs in initiation. , 1990, Journal of neurophysiology.

[31]  A Konnerth,et al.  Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. , 1986, Journal of neurophysiology.

[32]  Eva Syková,et al.  Diffusion heterogeneity and anisotropy in rat hippocampus , 1998, Neuroreport.

[33]  M. Steriade,et al.  Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. , 2004, Journal of neurophysiology.

[34]  M Migliore,et al.  Computer simulations of morphologically reconstructed CA3 hippocampal neurons. , 1995, Journal of neurophysiology.

[35]  G. Avanzini,et al.  Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex , 1995, Brain Research.

[36]  P. Gage,et al.  Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons , 1998, The Journal of physiology.

[37]  M. Avoli,et al.  Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro , 1998, The Journal of physiology.

[38]  S. W. Kuffler,et al.  The physiology of neuroglial cells. , 1966, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[39]  P W Gage,et al.  Oxygen‐sensing persistent sodium channels in rat hippocampus , 2000, The Journal of physiology.

[40]  H. Jasper,et al.  Basic Mechanisms of the Epilepsies , 1971, Journal of the Royal College of Physicians of London.

[41]  M. Vreugdenhil,et al.  Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis , 1998, Neuroscience.

[42]  J. McNamara,et al.  Interstitial ion concentrations and paroxysmal discharges in hippocampal formation and spinal cord. , 1986, Advances in neurology.

[43]  P C Schwindt,et al.  Role of persistent inward and outward membrane currents in epileptiform bursting in mammalian neurons. , 1986, Advances in neurology.

[44]  Ivan Soltesz,et al.  Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. , 2004, Journal of neurophysiology.

[45]  M. Dichter,et al.  Silent cells during interictal discharges and seizures in hippocampal penicillin foci. Evidence for the role of extracellular K+ in the transition from the interictal state to seizures. , 1972, Brain research.

[46]  J G Jefferys,et al.  Functionally relevant and functionally disruptive (epileptic) synchronized oscillations in brain slices. , 1999, Advances in neurology.

[47]  R. Llinás,et al.  Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. , 1979, Journal of neurophysiology.

[48]  M. Tennigkeit,et al.  Properties of the fast sodium channels in pyramidal neurones isolated from the CA1 and CA3 areas of the hippocampus of postnatal rats , 1990, Pflügers Archiv.

[49]  J. Macdonald,et al.  Extracellular calcium sensed by a novel cation channel in hippocampal neurons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Hellmuth Petsche,et al.  Hippocampal electrical activity IV. Abnormal electrical activity , 1961 .

[51]  P. Schwartzkroin,et al.  Dissociation of Synchronization and Excitability in Furosemide Blockade of Epileptiform Activity , 1995, Science.

[52]  Michel Boisson,et al.  Abnormal neuronal discharges , 1978 .

[53]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[54]  A. Betz,et al.  Epithelial properties of brain capillary endothelium. , 1985, Federation proceedings.

[55]  S J Korn,et al.  Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. , 1987, Journal of neurophysiology.

[56]  H. Kager,et al.  Calcium sensitive non-selective cation current promotes seizure-like discharges and spreading depression in a model neuron , 2009, Journal of Computational Neuroscience.

[57]  Richard Jung,et al.  Hirnelektrische Untersuchungen über Entstehung und Erhaltung von Krampfentladungen: Die Vorgänge am Reizort und die Bremsfähigkeit des Gehirns , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[58]  J. McNamara,et al.  Sustained potential shifts and paroxysmal discharges in hippocampal formation. , 1985, Journal of neurophysiology.

[59]  T. Sejnowski,et al.  Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. , 2004, Journal of neurophysiology.

[60]  C. Vera,et al.  Investigations on the Mechanism of Epileptic Discharge in the Hippocampus , 1961, Epilepsia.

[61]  U. Heinemann,et al.  Ionic changes and alterations in the size of the extracellular space during epileptic activity. , 1986, Advances in neurology.

[62]  U. Heinemann,et al.  Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio , 1985, Experimental Neurology.

[63]  R. Dingledine,et al.  Regional variation of extracellular space in the hippocampus. , 1990, Science.

[64]  An Intracellular,et al.  Analysis of Their Contrasting Repetitive Firing Properties in the Cat , 1976 .

[65]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[66]  M. Gutnick,et al.  Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat , 1977, Experimental Brain Research.

[67]  Y. Yaari,et al.  Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. , 1997, Journal of neurophysiology.

[68]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[69]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[70]  J. L. Stringer,et al.  Maximal dentate gyrus activation: characteristics and alterations after repeated seizures. , 1989, Journal of neurophysiology.

[71]  G. Somjen,et al.  Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices , 2000, Brain Research.

[72]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[73]  Lyle J. Borg-Graham,et al.  Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models , 1999 .

[74]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[75]  O. -J. Grüsser,et al.  Membranpotential und Entladungsfolgen corticaler Zellen, EEG und corticales DC-Potential bei generalisierten Krampfanfällen , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[76]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[77]  Uwe Heinemann,et al.  Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat , 1977, Brain Research.

[78]  David S. Maxwell,et al.  Hippocampal electrical activity I. Morphological aspects , 1961 .

[79]  T A Pedley,et al.  The role of extracellular potassium in hippocampal epilepsy. , 1976, Archives of neurology.

[80]  C. E. Elger,et al.  Voltage-dependent Ca2+ currents in epilepsy , 1998, Epilepsy Research.

[81]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[82]  U. Heinemann,et al.  Step reductions in extracellular Ca2+ activate a transient inward current in chick dorsal root ganglion cells. , 1986, Biophysical journal.

[83]  Y. Yaari,et al.  Ionic basis of spike after‐depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. , 1996, The Journal of physiology.

[84]  O J Grüsser,et al.  [Membrane potentials and after dis charges of cortical cells, EEG and cortical DC-potentials in generalized convulsions]. , 1968, Archiv fur Psychiatrie und Nervenkrankheiten.

[85]  E. Kandel,et al.  The Pyramidal Cell during Hippocampal Seizure , 1961, Epilepsia.

[86]  B W Connors,et al.  Dynamic properties of cells, synapses, circuits, and seizures in neocortex. , 2000, Advances in neurology.

[87]  D. Prince,et al.  Extracellular calcium and potassium changes in hippocampal slices , 1980, Brain Research.

[88]  G. Somjen,et al.  Conditions for the triggering of spreading depression studied with computer simulations. , 2002, Journal of neurophysiology.

[89]  J C Oakley,et al.  Conductance changes in neocortical propagated seizure: seizure termination. , 1972, Experimental neurology.

[90]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[91]  M. Vreugdenhil,et al.  Kindling-induced long-lasting enhancement of calcium current in hippocampal CA1 area of the rat: Relation to calcium-dependent inactivation , 1994, Neuroscience.

[92]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[93]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[94]  J. Hablitz,et al.  Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. , 1984, Journal of neurophysiology.

[95]  C. Borck,et al.  Seizure-like events in disinhibited ventral slices of adult rat hippocampus. , 1999, Journal of neurophysiology.

[96]  T A Pedley,et al.  Regulation of extracellular potassium concentration in epileptogenesis. , 1976, Federation proceedings.

[97]  U. Heinemann,et al.  Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain , 1989, Glia.

[98]  G. Somjen,et al.  Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. , 1994, Journal of neurophysiology.

[99]  P W Gage,et al.  A voltage-dependent persistent sodium current in mammalian hippocampal neurons , 1990, The Journal of general physiology.

[100]  G. Sypert,et al.  Conductance changes in neocortical propagated seizure: seizure initiation. , 1972, Experimental neurology.

[101]  Carlos G Vanoye,et al.  Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[102]  C. Nicholson,et al.  Spatial buffering of potassium ions in brain extracellular space. , 2000, Biophysical journal.

[103]  M. Steriade,et al.  Changes in neuronal conductance during different components of cortically generated spike-wave seizures , 2000, Neuroscience.

[104]  B. Connors,et al.  Mechanisms of neocortical epileptogenesis in vitro. , 1982, Journal of neurophysiology.

[105]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[106]  M W Bradbury,et al.  Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid , 1970, The Journal of physiology.

[107]  E. R. Kandel,et al.  Electrical Properties of Hypothalamic Neuroendocrine Cells , 1964, The Journal of general physiology.

[108]  D. Prince,et al.  Participation of calcium spikes during intrinsic burst firing in hippocampal neurons , 1978, Brain Research.

[109]  M. Joëls,et al.  Low-threshold calcium current in dendrites of the adult rat hippocampus , 1993, Neuroscience Letters.

[110]  J. A. Borgdorff,et al.  Calcium dynamics in hippocampal neurones , 2002 .

[111]  James O. McNamara,et al.  Epilepsy and all that jazz , 2001, Nature Medicine.

[112]  G. G. Somjen,et al.  Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons , 1998, Pflügers Archiv.

[113]  Wilkie A. Wilson,et al.  Magnesium-free medium activates seizure-like events in the rat hippocampal slice , 1986, Brain Research.

[114]  M. Dichter,et al.  The inherited epilepsies. , 1991, International journal of neurology.

[115]  Alain Destexhe,et al.  Ions in the Brain, Normal Function, Seizures, and Stroke, G.G. Somjen. Oxford University Press, Oxford, UK (2004), 432 pages, ISBN: 0195151712 , 2005 .

[116]  A Konnerth,et al.  Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. , 1986, Journal of neurophysiology.

[117]  J. M. Crowder,et al.  Excitatory Amino Acid Receptors and Depolarization‐Induced Ca2+ Influx into Hippocampal Slices , 1987, Journal of neurochemistry.