Phase Change Chalcogenide Materials for Optical Data Storage

Objective: To understand the structural and characteristic properties of phase change materials which are predominant for development of existing as well as future technologies. Crystallization kinetics and unlikeness between the amorphous and crystalline phases are the two main characterizations of phase change materials. Methods: This review demonstrates the different crystallization techniques in details. For re-writable DVD, the crystallization rate should be large enough to enable a high data rate at inflated temperature. Findings: Se-Te based chalcogenide alloys are frequently used in optical memory devices. But due to some drawbacks of these alloys, we have made an attempt to enhance their properties by addition of third element. Activation energy of crystallization (using Kissinger model) and rate of crystallization for ternary glassy alloys have been listed. It has been found that Ge is the favorable dopant for data storage applications because it has low activation energy of crystallization and high rate of crystallization. Applications: The chalcogenide fibers are used in fiber optic chemical sensor systems for remote detection and identification as well as detecting chemicals in mixtures.

[1]  理化学研究所 Scientific papers of the Institute of Physical and Chemical Research , 1922 .

[2]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[3]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[4]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[5]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[6]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[7]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[8]  J. Bennett,et al.  Kinetics of the Transformation of Metastable Tin‐Nickel Deposits I . Determination of the Avrami Equation Parameters by DSC or DTA , 1978 .

[9]  Thorpe,et al.  Elastic properties of glasses. , 1985, Physical review letters.

[10]  Stevens,et al.  Universal structural phase transition in network glasses. , 1983, Physical review. B, Condensed matter.

[11]  Wego Wang,et al.  On the activation energy of crystallization in metallic glasses , 1986 .

[12]  T. Ozawa Applicability of Friedman plot , 1986 .

[13]  D. Gosain,et al.  Some properties of Sb2Te3−xSex for nonvolatile memory based on phase transition , 1991 .

[14]  Kenichi Uchino,et al.  High-Density Pulse Width Modulation Recording and Rewritable Capability in GeSbTe Phase-Change System Using Visible Laser Beam at Low Linear Velocity , 1993 .

[15]  N. Nobukuni,et al.  Microstructural changes in GeSbTe film during repetitious overwriting in phase‐change optical recording , 1995 .

[16]  O. Matsuda,et al.  Laser spot size dependence of photo-induced crystallization process in amorphous GeSe2 film , 1996 .

[17]  M. Starink A new method for the derivation of activation energies from experiments performed at constant heating rate , 1996 .

[18]  F. Gan,et al.  Short-wavelength phase-change optical data storage in In-Sb-Te alloy films , 1997 .

[19]  M. Abdel-Rahim A study of the crystallization kinetics of some Se–Te–Sb glasses , 1998 .

[20]  Roel Van Woudenberg,et al.  Short Wavelength Phase-Change Recording , 1998 .

[21]  J. Saiter,et al.  Crystallization of AsxSe1-x from the glassy state (0.005 < x < 0.03) , 1998 .

[22]  T. Wágner,et al.  Amorphous chalcogenide Se1−x−y TexPy semiconducting alloys: thermal and mechanical properties , 1999 .

[23]  T. Babeva,et al.  Optical properties of phase-change optical disks with SbxSe100-x films , 2000 .

[24]  Donald J. Jacobs,et al.  Self-organization in network glasses , 2000 .

[25]  V. Mikla,et al.  Laser-induced amorphous-to-crystalline phase transition in SbxSe1−x alloys , 2001 .

[26]  J C Phillips Universal intermediate phases of dilute electronic and molecular glasses. , 2002, Physical review letters.

[27]  Matthias Wuttig,et al.  Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage , 2003 .

[28]  Yann Guimond,et al.  Production of complex chalcogenide glass optics by molding for thermal imaging , 2003 .

[29]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[30]  M. Husain,et al.  Laser-induced amorphization and crystallization on Se80Te20−xPbx thin films , 2003 .

[31]  J. Adam,et al.  Calorimetric study of characteristic temperatures and crystallization behavior in Ge–As–Se–Te glass system , 2004 .

[32]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[33]  N. Saxena Phase transformation kinetics and related thermodynamic and optical properties in chalcogenide glasses , 2004 .

[34]  Arizona State University,et al.  Self-organization and the physics of glassy networks , 2005, cond-mat/0502312.

[35]  G. Fuxi,et al.  Optical properties and structure of Sb-rich AgInSbTe phase change thin films , 2005 .

[36]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[37]  M. Wuttig,et al.  Sb-Se-based phase-change memory device with lower power and higher speed operations , 2006, IEEE Electron Device Letters.

[38]  P. Boolchand INTERMEDIATE PHASES, REVERSIBILITY WINDOWS, STRESS-FREE AND NON-AGING NETWORKS, AND STRONG LIQUIDS , 2006 .

[39]  M. Imran,et al.  Glass transition activation energy, glass-forming ability and thermal stability of Se90In10−xSnx (x=2, 4, 6 and 8) chalcogenide glasses , 2007 .

[40]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[41]  Phase change materials: From structures to kinetics , 2007 .

[42]  A. A. El-Fadl,et al.  Calorimetric studies of the crystallization process in Cu10Se90 and Cu20Se80 chalcogenide glasses , 2007 .

[43]  Matthias Wuttig,et al.  Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording , 2007 .

[44]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[45]  A. A. Joraid,et al.  Model-free method for analysis of non-isothermal kinetics of a bulk sample of selenium , 2008 .

[46]  A. Dahshan Thermal stability and crystallization kinetics of new As–Ge–Se–Sb glasses , 2008 .

[47]  M. El-Nahass,et al.  Glass transition behavior of binary GaxSe100-x (0≤x≤10) glass systems , 2008 .

[48]  A. Mahmoud,et al.  Kinetic study of non-isothermal crystallization of Bi x Se 100- x chalcogenide glasses , 2008 .

[49]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[50]  M. Kanatzidis,et al.  Crystal/glass phase change in K1−xRbxSb5S8 (x = 0.25, 0.50, 0.75) studied through thermal analysis techniques , 2008 .

[51]  M. Imran,et al.  Chemical bond approach to glass transition temperature and crystallization activation energy in Se90In10−xSnx (2 ≤ x ≤ 8) semiconducting glasses , 2008 .

[52]  Ming-Jinn Tsai,et al.  Ga2Te3Sb5—A Candidate for Fast and Ultralong Retention Phase‐Change Memory , 2009 .

[53]  S. N. Alamri,et al.  Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples , 2009 .

[54]  M. El-Oyoun Effect of wide range of heating rate on the crystallization kinetic parameters of Se77Te20Sb3 glass , 2009 .

[55]  Salman A. Khan,et al.  Calorimetric studies of the crystallization process in a-Se75S25−xAgx chalcogenide glasses , 2009 .

[56]  S. N. Alamri,et al.  A study on isothermal kinetics of glassy Sb9.1 Te20.1 Se70.8 alloy , 2009 .

[57]  A. Kumar,et al.  On the glass transition phenomenon in Se–Te and Se–Ge based ternary chalcogenide glasses , 2009 .

[58]  A. A. Abu-sehly Variation of the activation energy of crystallization in Se81.5Te16Sb2.5 chalcogenide glass: Isoconversional analysis , 2009 .

[59]  R. Thangaraj,et al.  Crystallization kinetics and composition dependence of some physical properties of Sn-Sb-Bi-Se chalcogenide glasses , 2009 .

[60]  R. Golovchak,et al.  Structural paradigm of Se-rich Ge–Se glasses by high-resolution x-ray photoelectron spectroscopy , 2009 .

[61]  K. Aly,et al.  Effect of Te additions on the glass transition and crystallization kinetics of (Sb15As30Se55)100−xTex amorphous solids , 2009 .

[62]  A. A. Elabbar Kinetics of the glass transition in Se72Te23Sb5 chalcogenide glass: Variation of the activation energy , 2009 .

[63]  K. Aly,et al.  Glass transition and crystallization kinetics of Inx(Se0.75Te0.25)100−x chalcogenide glasses , 2010 .

[64]  Sunil Kumar,et al.  Calorimetric studies of Se75Te15Cd10 and Se75Te10Cd10In5 multicomponent chalcogenide glasses , 2010 .

[65]  M. El-Raheem,et al.  Crystallization kinetics determination of Pb15Ge27Se58 chalcogenide glass by using the various heating rates (VHR) method , 2010 .

[66]  A. Soltan A study of DSC non-isothermal pre-crystallization kinetics of Pb10Se90 glass using isoconversional kinetic analysis , 2010 .

[67]  R. Thangaraj,et al.  Optical and electrical properties of Te-substituted Sn–Sb–Se semiconducting thin films , 2012 .

[68]  Virginie Nazabal,et al.  From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies , 2013, Molecules.

[69]  M. Abdel-Rahim,et al.  Crystallization study of Sn additive Se–Te chalcogenide alloys , 2013 .

[70]  M. Imran,et al.  Thermal characterization of Se100−xSnx (x = 4, 6 and 8) chalcogenide glasses using differential scanning calorimeter , 2013 .

[71]  A. Al-Shawabkeh,et al.  The effect of indium additive on the structural relaxation of Se–Sb–Sn semiconducting glasses , 2013 .

[72]  M. Abdel-Rahim,et al.  Crystal growth kinetics in Se87.5 Te10 Sn2.5 glass , 2013 .

[73]  Zhitang Song,et al.  Investigation of Ga8Sb34Se58 Material for Low-Power Phase Change Memory , 2013 .

[74]  N. Sharma,et al.  Effect of antimony addition on thermal stability and crystallization kinetics of germanium-selenium alloys , 2013 .

[75]  A. A. Abu-sehly,et al.  Crystallization kinetics of amorphous selenium prepared by ball milling technique: Evidence of three crystallization regimes , 2013 .

[76]  T. Wágner,et al.  Crystallization kinetics of Se–Te thin films , 2014 .

[77]  N. Sharma,et al.  Thermal stability and crystallization kinetics of quaternary Sb–Se–Ge–In chalcogenide glasses , 2014 .

[78]  M. Imran,et al.  Effect of chemical ordering on the crystallization behavior of Se90Te10−xSnx (x=2, 4, 6, and 8) chalcogenide glasses , 2014 .

[79]  A. A. Joraid,et al.  Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses , 2014 .

[80]  V. Saraswat,et al.  A study of kinetics of phase transformation of Ge10Se75Sb15 chalcogenide glass , 2014 .

[81]  J. Málek,et al.  Non-isothermal crystallization kinetics of As2Se3 glass studied by DSC , 2014 .

[82]  A. Farid,et al.  Glass transition and crystallization study of Te additive SeBi chalcogenide glass , 2015 .

[83]  N. Mehta A Chronological Overview of Phase-Change Materials , 2015 .

[84]  Young-Chang Joo,et al.  The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics , 2015 .

[85]  A. Mahmoud,et al.  Crystallization kinetics and thermal stability in Se85-xTe15Sbx chalcogenide glasses , 2016 .