Literature review of variants of the dynamic stiffness method. II: Frequency-dependent matrix and other corrective methods

The dynamic stiffness matrix method provides exact natural modes for a vibrating structure. Some variants of the method are discussed here. These include the frequency-dependent matrix method, another exact method; and also, some other approximate methods which employ dynamic corrections to the statically-based finite element method. This review (Part 1) is an extension of Part 2 which discussed the dynamic element method.

[1]  G. H. Sotiropoulos Dynamic reduction algorithms for the structural eigenproblem , 1984 .

[2]  K. K. Gupta Development of a finite dynamic element for free vibration analysis of two-dimensional structures , 1978 .

[3]  A. Leung An accurate method of dynamic condensation in structural analysis , 1978 .

[4]  F. W. Williams,et al.  A Study of the Bounds on Eigenvalues of a Transcendental Dynamic Stiffness Matrix Provided by a Simply Derived Linear Matrix Pencil , 1980 .

[5]  Robert L. Kidder,et al.  Reduction of structural frequency equations. , 1973 .

[6]  Bulet Ovunc Dynamic Analysis of Offshore Platforms By Frequency Dependent Stiffness Matrix Approach , 1972 .

[7]  Isaac Fried,et al.  Accuracy of string element mass matrix , 1979 .

[8]  Mario Paz Practical Reduction of Structural Eigenproblems , 1983 .

[9]  Andrew Y. T. Leung Fast convergence modal analysis for continuous systems , 1983 .

[10]  G. Sauer,et al.  A modified beam element mass matrix , 1988 .

[11]  Mario Paz,et al.  Modified Dynamic Condensation Method , 1986 .

[12]  V. H. Neubert Series Solutions for Structural Mobility , 1965 .

[13]  G. V. Narayanan,et al.  Use of dynamic influence coefficients in forced vibration problems with the aid of fast fourier transform , 1975 .

[14]  N. J. Fergusson,et al.  Frequency-Dependent Element Mass Matrices , 1992 .

[15]  D. L. Thomas Errors in natural frequency calculations using eigenvalue economization , 1982 .

[16]  P. O. Friberg Beam element matrices derived from Vlasov's theory of open thin‐walled elastic beams , 1985 .

[17]  R. Uhrig Bemerkungen zu „Das direkte (natürliche) Reduktionsverfahren, von S. Falk“ , 1986 .

[18]  Yee-Tak Leung,et al.  An accurate method of dynamic substructuring with simplified computation , 1979 .

[19]  H. A. Smith,et al.  New formulation for vibration analysis , 1989 .

[20]  Phillip L. Gould,et al.  Finite Element Analysis of Shells of Revolution , 1985 .

[21]  A. J. Fricker A new approach to the dynamic analysis of structures using fixed frequency dynamic stiffness matrices , 1983 .

[22]  George H. Sotiropoulos,et al.  The Transcendental Eigenvalue Problem of the Exact Dynamic Stiffness Matrix of Linearly Elastic Plane Frames , 1982 .

[23]  Alex Berman,et al.  Automated dynamic analytical model improvement , 1981 .

[24]  Y. T. Leung,et al.  Accelerated convergence of dynamic flexibility in series form , 1979 .

[25]  C. Stavrinidis,et al.  New concepts for finite-element mass matrix formulations , 1989 .

[26]  A. Leung Multilevel dynamic substructures , 1989 .

[27]  Chong-Won Lee,et al.  Frequency and time domain analysis of linear systems with frequency dependent parameters , 1988 .

[28]  Alex Berman,et al.  Mass Matrix Correction Using an Incomplete Set of Measured Modes , 1979 .

[29]  T. H. Richards,et al.  An accurate method in structural vibration analysis , 1977 .

[30]  Andrew Y. T. Leung A simple method for exponentially modulated random excitation , 1987 .

[31]  D. Joseph Mook,et al.  Robust time-domain identification of mass stiffness, and damping matrices , 1990 .

[32]  Fu-Shang Wei,et al.  Mass Matrix Modification Using Element Correction Method , 1989 .

[33]  Bulent A. Ovunc,et al.  Dynamics of frameworks by continuous mass method , 1974 .

[34]  G. Sauer Iterative improvement of eigensolutions from reduced matrices , 1989 .

[35]  Andrew Y. T. Leung,et al.  Dynamic analysis of periodic structures , 1980 .

[36]  Andrew Y. T. Leung DYNAMIC STIFFNESS METHOD FOR EXPONENTIALLY VARYING HARMONIC EXCITATION OF CONTINUOUS SYSTEMS , 1985 .

[37]  Raphael T. Haftka,et al.  An evaluation of higher-order modal methods for calculating transient structural response , 1987 .

[38]  Yee T. Leung,et al.  Dynamics of structural vibrations by frequency dependent matrices and modal analysis , 1976 .