When Politics and Models Collide: Estimating Models of Multiparty Elections

Theory: The spatial model of elections can better be represented by using conditional logit models which consider the position of the parties in issue spaces than by multinomial logit models which only consider the position of voters in the issue space. The spatial model, and random utility models in general, suffer from a failure to adequately consider the substitutability of parties sharing similar or identical issue positions. Hypotheses: Multinomial logit is not necessarily better than successive applications of binomial logit. Conditional logit allows for considering more interesting political questions than does multinomial logit. The spatial model may not correspond to voter decision-making in multiple party settings. Multinomial probit allows for a relaxation of the IIA condition and this should improve estimates of the effect of adding or removing parties. Methods: Comparisons of binomial logit, multinomial logit, conditional logit, and multinomial probit on simulated data and survey data from multiparty elections. Results: Multinomial logit offers almost no benefits over binomial logit. Conditional logit is capable of examining movements by parties, whereas multinomial logit is not. Multinomial probit performs better than conditional logit when considering the effects of altering the set of choices available to voters. Estimation of multinomial probit with more than three choices is feasible

[1]  V. Hajivassiliou,et al.  Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models , 1993 .

[2]  J. Geweke,et al.  Alternative computational approaches to inference in the multinomial probit model , 1994 .

[3]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[4]  Andrew D. Martin,et al.  Multiparty electoral competition in the Netherlands and Germany: A model based on multinomial probit , 1998 .

[5]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[6]  D. McFadden,et al.  The method of simulated scores for the estimation of LDV models , 1998 .

[7]  John H. Aldrich,et al.  Issues and the presidential primary voter , 1994 .

[8]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[9]  Anthony J. Nownes Primaries, General Elections, and Voter Turnout , 1992 .

[10]  R. Michael Alvarez,et al.  Information and elections , 1997 .

[11]  Melvin J. Hinich,et al.  The Spatial Theory Of Voting , 1984 .

[12]  Steven R. Lerman,et al.  The Estimation of Choice Probabilities from Choice Based Samples , 1977 .

[13]  D. S. Bunch,et al.  Estimability in the Multinomial Probit Model , 1989 .

[14]  Takeshi Amemiya,et al.  The Maximum Likelihood, the Minimum Chi-Square and the Nonlinear Weighted Least-Squares Estimator in the General Qualitative Response Model , 1976 .

[15]  R. McKelvey,et al.  Quantal Response Equilibria for Extensive Form Games , 1998 .

[16]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[17]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[18]  John H. Aldrich,et al.  Linear probability, logit and probit models , 1984 .

[19]  D. Bolduc GENERALIZED AUTOREGRESSIVE ERRORS IN THE MULTINOMIAL PROBIT MODEL , 1992 .

[20]  C. P. Middendorp,et al.  Economic voting in the Netherlands , 1990 .

[21]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[22]  D. McFadden,et al.  Specification tests for the multinomial logit model , 1984 .

[23]  M. Ben-Akiva,et al.  Discrete choice analysis , 1989 .

[24]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[25]  Arend Lijphart The Politics of Accommodation: Pluralism and Democracy in the Netherlands , 1968 .

[26]  R. Michael Alvarez,et al.  Economics, Issues and the Perot Candidacy: Voter Choice in the 1992 Presidential Election , 1995 .

[27]  B. R. Dansie PARAMETER ESTIMABILITY IN THE MULTINOMIAL PROBIT MODEL , 1985 .

[28]  M. Hinich,et al.  An Expository Development of a Mathematical Model of the Electoral Process , 1970, American Political Science Review.

[29]  James D. Wright,et al.  The Political Consciousness of Post-Industrialism@@@The Silent Revolution: Changing Values and Political Styles among Western Publics. , 1978 .

[30]  Kenneth A. Small,et al.  EFFICIENT ESTIMATION OF NESTED LOGIT MODELS , 1985 .

[31]  Michael Keane,et al.  A Note on Identification in the Multinomial Probit Model , 1992 .

[32]  Guy D. Whitten,et al.  Heightening comparativists concern for model choice: voting behavior in Great Britain and the Netherlands , 1996 .

[33]  Cees van der Eijk,et al.  Electoral Alignments in the Netherlands , 1987 .

[34]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[35]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[36]  Peter J. Coughlin,et al.  Probabilistic Voting Theory , 1992 .

[37]  Axel Börsch-Supan,et al.  Recent Developments in Flexible Discrete Choice Models: Nested Logit Analysis Versus Simulated Moments Probit Analysis , 1990 .

[38]  Jonathan Nagler,et al.  Scobit: An Alternative Estimator to Logit and Probit , 1994 .

[39]  A. Downs An Economic Theory of Democracy , 1957 .

[40]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[41]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[42]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[43]  Jonathan Nagler,et al.  Correlated Disturbances in Discrete Choice Models: A Comparison of Multinomial Probit Models and Logit Models , 1994 .

[44]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[45]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[46]  Jonathan Nagler,et al.  Issues, Economics, and the Dynamics of Multiparty Elections: The British 1987 General Election , 2000, American Political Science Review.

[47]  Wagner A. Kamakura,et al.  Book Review: Structural Analysis of Discrete Data with Econometric Applications , 1982 .

[48]  R. Inglehart Culture Shift in Advanced Industrial Society , 1991 .

[49]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[50]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .