Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition
暂无分享,去创建一个
[1] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[2] Alicia A. Johnson,et al. Gibbs sampling for a Bayesian hierarchical general linear model , 2007 .
[3] G. Roberts,et al. Stability of the Gibbs sampler for Bayesian hierarchical models , 2007, 0710.4234.
[4] Galin L. Jones,et al. Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.
[5] J. Rosenthal,et al. Adaptive Gibbs samplers and related MCMC methods , 2011, 1101.5838.
[6] Christian P. Robert,et al. Using a Markov Chain to Construct a Tractable Approximation of an Intractable Probability Distribution , 2006 .
[7] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[8] James M. Flegal,et al. Chapter 1 Implementing Markov chain Monte Carlo : Estimating with confidence , 2010 .
[9] Nicholas G. Polson,et al. On the Geometric Convergence of the Gibbs Sampler , 1994 .
[10] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[11] P. Diaconis,et al. Gibbs sampling, exponential families and orthogonal polynomials , 2008, 0808.3852.
[12] Murali Haran,et al. Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.
[13] Charles J. Geyer,et al. Likelihood inference for spatial point processes , 2019, Stochastic Geometry.
[14] J. Hobert,et al. Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression , 2007 .
[15] C. Geyer,et al. Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.
[16] C. Robert. Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .
[17] Galin L. Jones,et al. On the Geometric Ergodicity of Two-Variable Gibbs Samplers , 2012, 1206.4770.
[18] James P. Hobert,et al. The Data Augmentation Algorithm: Theory and Methodology , 2011 .
[19] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[20] Jeffrey S. Rosenthal,et al. Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .
[21] Galin L. Jones,et al. Sufficient burn-in for Gibbs samplers for a hierarchical random effects model , 2004, math/0406454.
[22] J. Hobert,et al. Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model , 2004 .
[23] Brian S Caffo,et al. Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data. , 2014, Bayesian analysis.
[24] C. McCulloch. Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .
[25] J. Booth,et al. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .
[26] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[27] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[28] J. Kadane,et al. Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .
[29] James P. Hobert,et al. Hierarchical Models: A Current Computational Perspective , 2000 .
[30] J. Rosenthal,et al. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.
[31] Gareth O. Roberts,et al. Markov Chains and De‐initializing Processes , 2001 .
[32] Galin L. Jones,et al. Ascent‐based Monte Carlo expectation– maximization , 2005 .
[33] Gareth O. Roberts,et al. Convergence of Conditional Metropolis-Hastings Samplers , 2014, Advances in Applied Probability.
[34] James P. Hobert,et al. Crossed Random Effect Models for Multiple Outcomes in a Study of Teratogenesis , 2001 .
[35] Ronald C. Neath,et al. On Convergence Properties of the Monte Carlo EM Algorithm , 2012, 1206.4768.
[36] J. Rosenthal,et al. Convergence of Slice Sampler Markov Chains , 1999 .
[37] Convergence analysis of the Gibbs sampler for Bayesian general linear mixed models with improper priors , 2012, 1111.3210.
[38] James P. Hobert,et al. Estimation of Bayes Factors in a Class of Hierarchical Random Effects Models Using a Geometrically Ergodic MCMC Algorithm , 2010 .
[39] J. Hobert,et al. Block Gibbs Sampling for Bayesian Random Effects Models With Improper Priors: Convergence and Regeneration , 2009 .
[40] Yves F. Atchad'e. KERNEL ESTIMATORS OF ASYMPTOTIC VARIANCE FOR ADAPTIVE MARKOV CHAIN MONTE CARLO , 2009, 0911.1164.
[41] Galin L. Jones,et al. On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .
[42] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[43] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[44] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[45] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[46] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[47] G. Fort,et al. On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.
[48] Jeffrey S. Rosenthal,et al. Optimal scaling of Metropolis algorithms: Heading toward general target distributions , 2008 .
[49] C. Geyer,et al. Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .
[50] J. Rosenthal,et al. Two convergence properties of hybrid samplers , 1998 .
[51] G. Roberts,et al. OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.
[52] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[53] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[54] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[55] James M. Flegal,et al. Batch means and spectral variance estimators in Markov chain Monte Carlo , 2008, 0811.1729.
[56] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.