Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition

It is common practice in Markov chain Monte Carlo to update the simulation one variable (or sub-block of variables) at a time, rather than conduct a single full-dimensional update. When it is possible to draw from each full-conditional distribution associated with the target this is just a Gibbs sampler. Often at least one of the Gibbs updates is replaced with a Metropolis-Hastings step, yielding a Metropolis-Hastings-within-Gibbs al- gorithm. Strategies for combining component-wise updates include compo- sition, random sequence and random scans. While these strategies can ease MCMC implementation and produce superior empirical performance com- pared to full-dimensional updates, the theoretical convergence properties of the associated Markov chains have received limited attention. We present conditions under which some component-wise Markov chains converge to the stationary distribution at a geometric rate. We pay particular attention to the connections between the convergence rates of the various component- wise strategies. This is important since it ensures the existence of tools that an MCMC practitioner can use to be as confident in the simulation results as if they were based on independent and identically distributed samples. We illustrate our results in two examples including a hierarchical linear mixed model and one involving maximum likelihood estimation for mixed models.

[1]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[2]  Alicia A. Johnson,et al.  Gibbs sampling for a Bayesian hierarchical general linear model , 2007 .

[3]  G. Roberts,et al.  Stability of the Gibbs sampler for Bayesian hierarchical models , 2007, 0710.4234.

[4]  Galin L. Jones,et al.  Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.

[5]  J. Rosenthal,et al.  Adaptive Gibbs samplers and related MCMC methods , 2011, 1101.5838.

[6]  Christian P. Robert,et al.  Using a Markov Chain to Construct a Tractable Approximation of an Intractable Probability Distribution , 2006 .

[7]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[8]  James M. Flegal,et al.  Chapter 1 Implementing Markov chain Monte Carlo : Estimating with confidence , 2010 .

[9]  Nicholas G. Polson,et al.  On the Geometric Convergence of the Gibbs Sampler , 1994 .

[10]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[11]  P. Diaconis,et al.  Gibbs sampling, exponential families and orthogonal polynomials , 2008, 0808.3852.

[12]  Murali Haran,et al.  Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.

[13]  Charles J. Geyer,et al.  Likelihood inference for spatial point processes , 2019, Stochastic Geometry.

[14]  J. Hobert,et al.  Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression , 2007 .

[15]  C. Geyer,et al.  Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.

[16]  C. Robert Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .

[17]  Galin L. Jones,et al.  On the Geometric Ergodicity of Two-Variable Gibbs Samplers , 2012, 1206.4770.

[18]  James P. Hobert,et al.  The Data Augmentation Algorithm: Theory and Methodology , 2011 .

[19]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[20]  Jeffrey S. Rosenthal,et al.  Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .

[21]  Galin L. Jones,et al.  Sufficient burn-in for Gibbs samplers for a hierarchical random effects model , 2004, math/0406454.

[22]  J. Hobert,et al.  Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model , 2004 .

[23]  Brian S Caffo,et al.  Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data. , 2014, Bayesian analysis.

[24]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[25]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[26]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[27]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[28]  J. Kadane,et al.  Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .

[29]  James P. Hobert,et al.  Hierarchical Models: A Current Computational Perspective , 2000 .

[30]  J. Rosenthal,et al.  Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.

[31]  Gareth O. Roberts,et al.  Markov Chains and De‐initializing Processes , 2001 .

[32]  Galin L. Jones,et al.  Ascent‐based Monte Carlo expectation– maximization , 2005 .

[33]  Gareth O. Roberts,et al.  Convergence of Conditional Metropolis-Hastings Samplers , 2014, Advances in Applied Probability.

[34]  James P. Hobert,et al.  Crossed Random Effect Models for Multiple Outcomes in a Study of Teratogenesis , 2001 .

[35]  Ronald C. Neath,et al.  On Convergence Properties of the Monte Carlo EM Algorithm , 2012, 1206.4768.

[36]  J. Rosenthal,et al.  Convergence of Slice Sampler Markov Chains , 1999 .

[37]  Convergence analysis of the Gibbs sampler for Bayesian general linear mixed models with improper priors , 2012, 1111.3210.

[38]  James P. Hobert,et al.  Estimation of Bayes Factors in a Class of Hierarchical Random Effects Models Using a Geometrically Ergodic MCMC Algorithm , 2010 .

[39]  J. Hobert,et al.  Block Gibbs Sampling for Bayesian Random Effects Models With Improper Priors: Convergence and Regeneration , 2009 .

[40]  Yves F. Atchad'e KERNEL ESTIMATORS OF ASYMPTOTIC VARIANCE FOR ADAPTIVE MARKOV CHAIN MONTE CARLO , 2009, 0911.1164.

[41]  Galin L. Jones,et al.  On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .

[42]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[43]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[44]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[45]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[46]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[47]  G. Fort,et al.  On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.

[48]  Jeffrey S. Rosenthal,et al.  Optimal scaling of Metropolis algorithms: Heading toward general target distributions , 2008 .

[49]  C. Geyer,et al.  Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .

[50]  J. Rosenthal,et al.  Two convergence properties of hybrid samplers , 1998 .

[51]  G. Roberts,et al.  OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.

[52]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[53]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[54]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[55]  James M. Flegal,et al.  Batch means and spectral variance estimators in Markov chain Monte Carlo , 2008, 0811.1729.

[56]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.