Agricultural watershed modeling: a review for hydrology and soil erosion processes

Modelos tem sido usados pelo homem ha milhares de anos para controlar seu ambiente de uma maneira favoravel para melhores condicoes de vida para os humanos. O uso de modelos hidrologicos tem sido uma ferramenta muito eficaz para apoiar os decisores que lidam com as bacias hidrograficas para subsidiar diversas atividades economicas e sociais, como o abastecimento publico de agua, geracao de energia, e a disponibilidade de agua para a agricultura, entre outros. Objetivou-se, nesta revisao, discutir brevemente alguns modelos muito aplicados ao estudo do movimento da agua e solos em paisagens (RUSLE, WEPP, GeoWEPP, LASH, DHSVM and AnnAGNPS), para fornecer informacoes sobre os mesmos, para auxiliar no entendimento adequado de problemas especificos relacionados com os processos de hidrologia e erosao do solo. Modelos tem sido alterados e avaliados de forma significativa nos ultimos anos, com destaque para o uso de sensoriamento remoto, GIS e processo de calibracao automatica, permitindo aos mesmos que sejam capazes de simular bacias hidrograficas nas suas condicoes atuais de uso do solo e mudancas climaticas. No entanto, os modelos hidrologicos tem quase a mesma estrutura fisica, o que nao e suficiente para simular problemas relacionados com os efeitos a longo prazo de diferentes usos do solo. Esse tem sido um dos principais desafios para o futuro: compreender inteiramente o ciclo hidrologico, tendo como referencia a zona critica, na qual os processos hidrologicos agem em conjunto a partir do dossel ate a base dos aquiferos.

[1]  John R. Williams,et al.  Flood Routing With Variable Travel Time or Variable Storage Coefficients , 1969 .

[2]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[3]  W. H. Wischmeier,et al.  Predicting rainfall erosion losses : a guide to conservation planning , 1978 .

[4]  David B. Beasley,et al.  Modeling sediment yields from agricultural watersheds , 1982 .

[5]  John R. Williams,et al.  A modeling approach to determining the relationship between erosion and soil productivity [EPIC, Erosion-Productivity Impact Calculator, mathematical models] , 1984 .

[6]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[7]  L. J. Lane,et al.  User requirements: USDA, water erosion prediction project (WEPP) Draft 6.3 , 1987 .

[8]  W. G. Knisel,et al.  GLEAMS: Groundwater Loading Effects of Agricultural Management Systems , 1987 .

[9]  G. R. Foster,et al.  Estimating soil loss on topographically non-uniform field and farm units , 1988 .

[10]  R. Young,et al.  AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds , 1989 .

[11]  Jeffrey G. Arnold,et al.  SWRRB; a basin scale simulation model for soil and water resources management. , 1990 .

[12]  J. Philip SOILS, NATURAL SCIENCE, AND MODELS , 1991 .

[13]  William J. Elliot,et al.  WEPP: soil erodibility experiments for rangeland and cropland soils , 1991 .

[14]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[15]  L. R. Ahuja,et al.  Infiltration and soil water movement , 1992 .

[16]  M. Wigmosta,et al.  A distributed hydrology-vegetation model for complex terrain , 1994 .

[17]  J. G. Arnold,et al.  SWRRB - a watershed scale model for soil and water resources management , 1995 .

[18]  V. Singh,et al.  Computer Models of Watershed Hydrology , 1995 .

[19]  Jimmy R. Williams,et al.  Continuous-time water and sediment-routing model for large basins , 1995 .

[20]  G. R. Foster,et al.  Predicting soil erosion by water : a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) , 1997 .

[21]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[22]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[23]  Mark S. Wigmosta,et al.  POTENTIAL CLIMATE CHANGE IMPACTS ON MOUNTAIN WATERSHEDS IN THE PACIFIC NORTHWEST 1 , 1999 .

[24]  Yongping Yuan,et al.  EVALUATION OF ANNAGNPS ON MISSISSIPPI DELTA MSEA WATERSHEDS , 2000 .

[25]  James C. Ascough,et al.  The Water Erosion Prediction Project ( WEPP ) Model , 2001 .

[26]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[27]  D. Flanagan,et al.  Erosion database interface (EDI): a computer program for georeferenced application of erosion prediction models , 2002 .

[28]  Barbara Baginska,et al.  Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST , 2003, Environ. Model. Softw..

[29]  Diane M. McKnight,et al.  Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids , 2003 .

[30]  Carlos Cardoso Machado,et al.  Comparação de taxas de erosão em estradas florestais estimadas pelo modelo WEPP (Water Erosion Prediction Project) modificado em relção a medições experimentais , 2003 .

[31]  Chris S. Renschler,et al.  Designing geo‐spatial interfaces to scale process models: the GeoWEPP approach , 2003 .

[32]  V. Singh,et al.  A Modified SCS-CN Method: Characterization and Testing , 2003 .

[33]  Jurgen D. Garbrecht,et al.  EVALUATION OF CLIGEN PRECIPITATION PARAMETERS AND THEIR IMPLICATION ON WEPP RUNOFF AND EROSION PREDICTION , 2003 .

[34]  Andrew C. Whitaker,et al.  Application of the distributed hydrology soil vegetation model to Redfish Creek, British Columbia: model evaluation using internal catchment data , 2003 .

[35]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[36]  K. Abbaspour,et al.  Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure , 2004 .

[37]  S. Silvestri,et al.  Subsurface flow and vegetation patterns in tidal environments , 2004 .

[38]  Ewald Schnug,et al.  Runoff mapping using WEPP erosion model and GIS tools , 2005, Comput. Geosci..

[39]  Dennis P. Lettenmaier,et al.  A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds , 2006 .

[40]  Mukand S. Babel,et al.  Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal , 2006, Environ. Model. Softw..

[41]  A van Griensven,et al.  Methods to quantify and identify the sources of uncertainty for river basin water quality models. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[42]  C. Smith,et al.  Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed , 2007, Environ. Model. Softw..

[43]  Miles G. Logsdon,et al.  Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand , 2007 .

[44]  Shuhui Dun,et al.  Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy , 2007 .

[45]  Ronald L. Bingner,et al.  Runoff and soil erosion evaluation by the AnnAGNPS model in a small mediterranean watershed , 2007 .

[46]  John E. Gilley,et al.  Water Erosion Prediction Project (WEPP): Development History, Model Capabilities, and Future Enhancements , 2007 .

[47]  K. Abbaspour,et al.  Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT , 2007 .

[48]  T. Tokola,et al.  Effect of vegetation cover on soil erosion in a mountainous watershed , 2008 .

[49]  Dennis P. Lettenmaier,et al.  Hydrologic prediction for urban watersheds with the Distributed Hydrology–Soil–Vegetation Model , 2008 .

[50]  Wan Muhd Aminuddin Wan Hussin,et al.  Applications of AnnAGNPS model for soil loss estimation and nutrient loading for Malaysian conditions , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[51]  C. Mello,et al.  Development and application of a simple hydrologic model simulation for a Brazilian headwater basin , 2008 .

[52]  Maria Cândida Moitinho Nunes,et al.  Estimativa da erodibilidade em entressulcos de latossolos do Rio Grande do Sul , 2008 .

[53]  A. Pandey,et al.  Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model , 2008 .

[54]  Recep Gundogan,et al.  Application of GeoWEPP for Determining Sediment Yield and Runoff in the Orcan Creek Watershed in Kahramanmaras, Turkey † , 2008, Sensors.

[55]  A. Fares Overview Of The Hydrological ModelingOf Small Coastal Watersheds On Tropical Islands , 2008 .

[56]  William J. Elliot,et al.  Adapting the Water Erosion Prediction Project (WEPP) model for forest applications , 2009 .

[57]  Kyle R. Mankin,et al.  Comparison of AnnAGNPS and SWAT model simulation results in USDA‐CEAP agricultural watersheds in south‐central Kansas , 2009 .

[58]  C. R. Meyer,et al.  Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP , 2009, Journal of Soil and Water Conservation.

[59]  Z. Chen,et al.  Atmospheric Model-Based Streamflow Forecasting at Small, Mountainous Watersheds by a Distributed Hydrologic Model: Application to a Watershed in Japan , 2009 .

[60]  Carlos Rogério de Mello,et al.  Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling , 2009 .

[61]  Dennis P. Lettenmaier,et al.  Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin , 2009 .

[62]  Xinxiao Yu,et al.  Simulated multi-scale watershed runoff and sediment production based on GeoWEPP model , 2009 .

[63]  Demetrius David da Silva,et al.  Avaliação do desempenho dos modelos de predição da erosão hídrica USLE, RUSLE e WEPP para diferentes condições edafoclimáticas do Brasil , 2010 .

[64]  G. Padmanabhan,et al.  Estimating sediment, nitrogen, and phosphorous loads from the Pipestem Creek watershed, North Dakota, using AnnAGNPS , 2010, Comput. Geosci..

[65]  Javier Casalí,et al.  Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed , 2014 .

[66]  Hone-Jay Chu,et al.  Modelling the hydrologic effects of dynamic land‐use change using a distributed hydrologic model and a spatial land‐use allocation model , 2010 .

[67]  W. Elliot,et al.  Risk‐Based Erosion Assessment: Application to Forest Watershed Management and Planning , 2011 .

[68]  M. Shukla,et al.  An overview of some soil hydrological watershed models. , 2011 .

[69]  C. Mello,et al.  Multivariate models for annual rainfall erosivity in Brazil , 2013 .

[70]  F. D. Theurer,et al.  Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS , 2011, International journal of environmental research and public health.

[71]  Jeffrey G. Arnold,et al.  Soil and Water Assessment Tool Theoretical Documentation Version 2009 , 2011 .

[72]  Mauro Naghettini,et al.  Applicability of the SWAT model for hydrologic simulation in Paraopeba river basin, MG. , 2011 .

[73]  Carlos Rogério de Mello,et al.  Development, sensitivity and uncertainty analysis of LASH model , 2011 .

[74]  D. C. Flanagan,et al.  Evaluation of the AnnAGNPS Model for Atrazine Prediction in Northeast Indiana , 2011 .

[75]  Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions , 2011 .

[76]  D. Flanagan,et al.  Applying online WEPP to assess forest watershed hydrology , 2011 .

[77]  André Ferreira dos Santos,et al.  Modelagem Hidrológica em uma Sub-bacia Hidrográfica do Baixo Rio Araguaia, TO , 2012 .

[78]  A. Melesse,et al.  Watershed scale application of WEPP and EROSION 3D models for assessment of potential sediment source areas and runoff flux in the Mara River Basin, Kenya , 2012 .

[79]  M. Safeeq,et al.  Hydrologic effect of groundwater development in a small mountainous tropical watershed , 2012 .

[80]  C. Nobre,et al.  Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: model evaluation and advances in calibration using the new HAND terrain model , 2012 .

[81]  Yongping Yuan,et al.  Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China , 2012, International journal of environmental research and public health.

[82]  Ronald L. Bingner,et al.  Modeling the contribution of ephemeral gully erosion under different soil managements: A case study in an olive orchard microcatchment using the AnnAGNPS model , 2012 .

[83]  Jiake Li,et al.  Evaluation of AnnAGNPS and its applications in a semi-arid and semi-humid watershed in Northwest China , 2012 .

[84]  P. Belmont,et al.  Modeling the impact of land use changes on runoff and sediment yield in the Le Sueur watershed, Minnesota using GeoWEPP , 2013 .

[85]  William J. Elliot,et al.  Erosion Processes and Prediction with WEPP Technology in Forests in the Northwestern U.S. , 2013 .

[86]  Carlos Rogério de Mello,et al.  Simulação hidrológica em uma bacia hidrográfica representativa dos Latossolos na região Alto Rio Grande, MG , 2013 .

[87]  Multivariate models for annual rainfall erosivity in Brazil , 2013 .

[88]  L. Norton,et al.  Rill and interrill erodibility and sediment characteristics of clayey Australian Vertosols and a Ferrosol , 2013 .

[89]  William J. Elliot,et al.  Geospatial Application of the Water Erosion Prediction Project (WEPP) Model , 2011 .

[90]  Aminreza Meghdadi Identification of effective best management practices in sediment yield diminution using GeoWEPP: the Kasilian watershed case study , 2013 .

[91]  Samuel Beskow,et al.  Application of the Soil and Water Assessment Tool (SWAT) for Sediment Transport Simulation at a Headwater Watershed in Minas Gerais State, Brazil , 2013 .

[92]  Carlos Rogério de Mello,et al.  Simulação Hidrológica Escalar com o Modelo SWAT , 2014 .

[93]  SOIL EROSION VULNERABILITY IN THE VERDE RIVER BASIN, SOUTHERN MINAS GERAIS , 2014 .

[94]  Robert J. Mitchell,et al.  Modeling the effects of climate change projections on streamflow in the Nooksack River basin, Northwest Washington , 2014 .

[95]  C. Mello,et al.  Impacts of Land-use Changes on the Hydrology of the Grande River Basin Headwaters, Southeastern Brazil , 2014, Water Resources Management.

[96]  M. Podhorányi,et al.  Inaccuracy introduced by LiDAR-generated cross sections and its impact on 1D hydrodynamic simulations , 2014, Environmental Earth Sciences.

[97]  G. Sun,et al.  Potential impacts of climate change on soil erosion vulnerability across the conterminous United States , 2014, Journal of Soil and Water Conservation.

[98]  Yang Li,et al.  Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China , 2015, Environmental Earth Sciences.

[99]  C. Mello,et al.  Hydrosedimentologic disturbance index applied to watersheds of Minas Gerais state , 2014 .

[100]  Demetrius David da Silva,et al.  Hydrological simulation using SWAT model in headwater basin in Southeast Brazil , 2014 .

[101]  S. Chou,et al.  Assessing climate change impacts on Upper Grande River Basin hydrology, Southeast Brazil , 2015 .

[102]  Jing Zhang,et al.  The comparative study of multi‐site uncertainty evaluation method based on SWAT model , 2015 .

[103]  Chuan Luo,et al.  Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China , 2015 .

[104]  C. Mello,et al.  Assessing the climate change impacts on the rainfall erosivity throughout the twenty-first century in the Grande River Basin (GRB) headwaters, Southeastern Brazil , 2015, Environmental Earth Sciences.

[105]  F. F. Pruski,et al.  Avaliação dos modelos de predição da erosão hídrica USLE, RUSLE e WEPP para diferentes condições edafoclimáticas do Brasil , 2016 .