Activation of rhodopsin: new insights from structural and biochemical studies.

[1]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[2]  T. Ngo,et al.  Functionally Discrete Mimics of Light-activated Rhodopsin Identified through Expression of Soluble Cytoplasmic Domains* , 2000, The Journal of Biological Chemistry.

[3]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[4]  K. Fahmy,et al.  Transducin-dependent protonation of glutamic acid 134 in rhodopsin. , 2000, Biochemistry.

[5]  M. Engelhard,et al.  Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. , 2000, Journal of molecular biology.

[6]  P. Ormos,et al.  Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin , 2000, Nature.

[7]  A. Abell,et al.  Constitutive activation of G protein-coupled receptors as a result of selective substitution of a conserved leucine residue in transmembrane helix III. , 2000, Molecular endocrinology.

[8]  M. Sheves,et al.  The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study. , 2000, Biochemistry.

[9]  K. Nakanishi,et al.  Movement of retinal along the visual transduction path. , 2000, Science.

[10]  K. Hofmann,et al.  FTIR spectroscopy of complexes formed between metarhodopsin II and C‐terminal peptides from the G‐protein α‐ and γ‐subunits , 2000 .

[11]  P. Henklein,et al.  Mutation of the Fourth Cytoplasmic Loop of Rhodopsin Affects Binding of Transducin and Peptides Derived from the Carboxyl-terminal Sequences of Transducin α and γ Subunits* , 2000, The Journal of Biological Chemistry.

[12]  W. Gärtner,et al.  Signaling States of Rhodopsin RETINAL PROVIDES A SCAFFOLD FOR ACTIVATING PROTON TRANSFER SWITCHES* , 2000 .

[13]  K. Rothschild,et al.  Chapter 1 Structure and mechanism of vertebrate visual pigments , 2000 .

[14]  K. Hofmann Chapter 3 Late photoproducts and signaling states of bovine rhodopsin , 2000 .

[15]  G. Schultz,et al.  Activation of the rod G-protein Gt by the thrombin receptor (PAR1) expressed in Sf9 cells. , 1999, European journal of biochemistry.

[16]  T. Schwartz,et al.  Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H Luecke,et al.  Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. , 1999, Science.

[18]  G. Kochendoerfer,et al.  How color visual pigments are tuned. , 1999, Trends in biochemical sciences.

[19]  S. S. Lee,et al.  Folding and Assembly in Rhodopsin , 1999, The Journal of Biological Chemistry.

[20]  Thomas Gudermann,et al.  Structural basis of G protein-coupled receptor function , 1999, Molecular and Cellular Endocrinology.

[21]  K. Hofmann,et al.  Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E C Hulme,et al.  The Functional Topography of Transmembrane Domain 3 of the M1 Muscarinic Acetylcholine Receptor, Revealed by Scanning Mutagenesis* , 1999, The Journal of Biological Chemistry.

[23]  J Nathans,et al.  Molecular genetics of human retinal disease. , 1999, Annual review of genetics.

[24]  Y. Shichida,et al.  Visual pigment: G-protein-coupled receptor for light signals , 1998, Cellular and Molecular Life Sciences CMLS.

[25]  P. Hargrave,et al.  Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. O. Smith,et al.  Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. , 1998, Biochemistry.

[27]  T. Sakmar Rhodopsin: a prototypical G protein-coupled receptor. , 1998, Progress in nucleic acid research and molecular biology.

[28]  H. Khorana,et al.  Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  C. Cowan,et al.  A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. , 1997, Biophysical journal.

[30]  J. Baldwin,et al.  An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. , 1997, Journal of molecular biology.

[31]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[32]  A. Scheer,et al.  The activation process of the alpha1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[34]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[35]  D. Kliger,et al.  Spectral and Kinetic Characterization of Visual Pigment Photointermediates , 1995 .

[36]  J. Spudich Protein-protein interaction converts a proton pump into a sensory receptor , 1994, Cell.

[37]  K. Fahmy,et al.  A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. , 1994, The Journal of biological chemistry.

[38]  K. Fahmy,et al.  Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. , 1994, Biochemistry.

[39]  M. Sheves,et al.  Interactions of the beta-ionone ring with the protein in the visual pigment rhodopsin control the activation mechanism. An FTIR and fluorescence study on artificial vertebrate rhodopsins. , 1994, Biochemistry.

[40]  K. Palczewski,et al.  Control of rhodopsin multiple phosphorylation. , 1994, Biochemistry.

[41]  K. Hideg,et al.  Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. , 1993, Science.

[42]  K. Hofmann,et al.  Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Oprian,et al.  Constitutive activation of opsin: influence of charge at position 134 and size at position 296. , 1993, Biochemistry.

[44]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[45]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[46]  D. Oprian,et al.  Constitutively active mutants of rhodopsin , 1992, Neuron.

[47]  D. Oprian,et al.  The ligand-binding domain of rhodopsin and other G protein-linked receptors , 1992, Journal of bioenergetics and biomembranes.

[48]  P. Hargrave,et al.  Rhodopsin and phototransduction: a model system for G protein‐linked receptors , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  M. Gutman,et al.  The dynamic aspects of proton transfer processes , 1990 .

[50]  R. Mathies,et al.  Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision. , 1989, Biochemistry.

[51]  N. W. Downer,et al.  Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation. , 1985, Biophysical journal.

[52]  A. Cooper Energy uptake in the first step of visual excitation , 1979, Nature.

[53]  Carolyn A. Converse,et al.  Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes. , 1976, Biochemistry.

[54]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.