The role of gap states in the energy level alignment at the organic-organic heterojunction interfaces.

The interface properties of organic-organic heterojunctions (OOHs), such as interface energy level alignment (ELA), interfacial charge transfer, interface nanostructuring, molecular orientation and so on, play an essential role in determining the device performance for some technologically important organic electronic devices, encompassing organic solar cells, bipolar organic field-effect-transistors, and organic light-emitting-diodes. The aim of this article is to provide a balanced assessment on the understanding of the ELA at the small-molecule based OOH interfaces with well-defined molecular orientation, with particular emphasis on the role of gap states in organic thin films. A generalized picture of gap states determined ELA at the OOH interfaces is provided and their implications in relevant organic electronic devices have been discussed.

[1]  Wei Chen,et al.  Molecular orientation dependent interfacial dipole at the F16CuPc∕CuPc organic heterojunction interface , 2008 .

[2]  James G. Grote,et al.  Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer , 2006 .

[3]  O. V. Molodtsova,et al.  Electronic properties of the organic semiconductor interfaces CuPc∕C60 and C60∕CuPc , 2006 .

[4]  K. Sakamoto,et al.  Band gap states of copper phthalocyanine thin films induced by nitrogen exposure , 2010 .

[5]  Yong Cao,et al.  Improved quantum efficiency for electroluminescence in semiconducting polymers , 1999, Nature.

[6]  N. Ueno,et al.  Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy , 2009 .

[7]  Wei Chen,et al.  Low-Temperature Scanning Tunneling Microscopy Investigation of Epitaxial Growth of F16CuPc Thin Films on Ag(111) , 2008 .

[8]  Wei Chen,et al.  Low-temperature scanning tunneling microscopy and near-edge X-ray absorption fine structure investigation of epitaxial growth of F16CuPc thin films on graphite , 2009 .

[9]  Wei Chen,et al.  Chemical vapor deposition graphene as structural template to control interfacial molecular orientation of chloroaluminium phthalocyanine , 2011 .

[10]  Dependence of mobility on density of gap states in organics by GAMEaS-gate modulated activation energy spectroscopy , 2006, cond-mat/0608687.

[11]  Chih‐Ping Chen,et al.  High‐Performance and Highly Durable Inverted Organic Photovoltaics Embedding Solution‐Processable Vanadium Oxides as an Interfacial Hole‐Transporting Layer , 2011, Advanced materials.

[12]  Shui-Tong Lee,et al.  INTERFACIAL ELECTRONIC STRUCTURES IN AN ORGANIC LIGHT-EMITTING DIODE , 1999 .

[13]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[14]  Wei Chen,et al.  Molecular trapping on two-dimensional binary supramolecular networks. , 2011, Journal of the American Chemical Society.

[15]  A. Yang Two-photon Photo-emission of Ultrathin Film PTCDA Morphologies on Ag(111) , 2007 .

[16]  W. R. Salaneck,et al.  Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces , 2006 .

[17]  P. Tegeder,et al.  Optically Induced Inter- and Intrafacial Electron Transfer Probed by Two-Photon Photoemission: Electronic States of Sexithiophene on Au(111) , 2011 .

[18]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[19]  B. Doyle,et al.  Balancing Intermolecular and Molecule–Substrate Interactions in Supramolecular Assemblies , 2009 .

[20]  Bertram Batlogg,et al.  Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals , 2010, 1002.1611.

[21]  C. Adachi,et al.  Improvement of Electroluminescence Performance of Organic Light‐Emitting Diodes with a Liquid‐Emitting Layer by Introduction of Electrolyte and a Hole‐Blocking Layer , 2011, Advanced materials.

[22]  Jun Wang,et al.  Organic heterojunction and its application for double channel field-effect transistors , 2005 .

[23]  J. Yuhara,et al.  Tunable Arrays of C60 Molecular Chains , 2008 .

[24]  Xiaoyang Zhu Electronic structure and electron dynamics at molecule?metal interfaces: implications for molecule-based electronics , 2004 .

[25]  Takashi Yamada,et al.  Lateral inhomogeneity of unoccupied states for PbPc films , 2011 .

[26]  Weiying Gao,et al.  Energy level alignment at organic heterojunctions : Role of the charge neutrality level , 2005 .

[27]  Wei Chen,et al.  Low-Temperature Scanning Tunneling Microscopy and Near-Edge X-ray Absorption Fine Structure Investigations of Molecular Orientation of Copper(II) Phthalocyanine Thin Films at Organic Heterojunction Interfaces , 2008 .

[28]  P. Heremans,et al.  On the interface dipole at the pentacene-fullerene heterojunction : A theoretical study , 2010 .

[29]  O. Monti,et al.  Experimental Determination of the Excited-State Polarizability and Dipole Moment in a Thin Organic Semiconductor Film , 2010 .

[30]  Jean-Luc Brédas,et al.  Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces , 2007 .

[31]  H. Tian,et al.  n‐Channel, Ambipolar, and p‐Channel Organic Heterojunction Transistors Fabricated with Various Film Morphologies , 2007 .

[32]  Chun-Sing Lee,et al.  Electronic structures of organic/organic heterojunctions: From vacuum level alignment to Fermi level pinning , 2007 .

[33]  D. V. Lang,et al.  Field-effect transistor on pentacene single crystal , 2003 .

[34]  J A Rogers,et al.  Hall effect in the accumulation layers on the surface of organic semiconductors. , 2005, Physical review letters.

[35]  A. Wee,et al.  Surface‐Transfer Doping of Organic Semiconductors Using Functionalized Self‐Assembled Monolayers , 2007 .

[36]  Wei Chen,et al.  Tuning of C60 energy levels using orientation-controlled phthalocyanine films , 2010 .

[37]  William R. Salaneck,et al.  Influence of the electrode work function on the energy level alignment at organic-organic interfaces , 2007 .

[38]  Wei Chen,et al.  Organic–Organic Heterojunction Interfaces: Effect of Molecular Orientation , 2011 .

[39]  H. Lee,et al.  NiSi crystal structure, site preference, and partitioning behavior of palladium in NiSi(Pd)/Si(100) thin films: Experiments and calculations , 2011 .

[40]  Wei Chen,et al.  Molecular-scale investigation of C60/p-sexiphenyl organic heterojunction interface. , 2011, The Journal of chemical physics.

[41]  C. Chan,et al.  Direct determination of the hole density of states in undoped and doped amorphous organic films with high lateral resolution. , 2005, Physical review letters.

[42]  Donghang Yan,et al.  Electronic structure of interfaces between copper-hexadecafluoro-phthalocyanine and 2,5-bis(4-biphenylyl) bithiophene , 2007 .

[43]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[44]  Chun-Sing Lee,et al.  Substrate dependence of energy level alignment at the donor–acceptor interface in organic photovoltaic devices , 2009 .

[45]  B. Batlogg,et al.  Defect healing at room temperature in pentacene thin films and improved transistor performance , 2007, 0711.1457.

[46]  Wei Chen,et al.  Surface transfer doping of semiconductors , 2009 .

[47]  Wei Chen,et al.  Molecular Orientation Dependent Energy Level Alignment at Organic−Organic Heterojunction Interfaces , 2009 .

[48]  Xiaoyang Zhu,et al.  Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces , 2010 .

[49]  W. R. Salaneck,et al.  Fermi level equilibrium at donor-acceptor interfaces in multi-layered thin film stack of TTF and TCNQ , 2010 .

[50]  Norbert Koch,et al.  Work Function Independent Hole‐Injection Barriers Between Pentacene and Conducting Polymers , 2005 .

[51]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[52]  J. Johns,et al.  Quantum confinement and anisotropy in thin-film molecular semiconductors , 2011 .

[53]  Wei Chen,et al.  Orientation-controlled charge transfer at CuPc/F16CuPc interfaces , 2009 .

[54]  William R. Salaneck,et al.  Fermi-level pinning at conjugated polymer interfaces , 2006 .

[55]  Fernando Flores,et al.  Induced Density of States model for weakly-interacting organic semiconductor interfaces , 2007 .

[56]  Wei Chen,et al.  Mechanism of the Fermi level pinning at organic donor–acceptor heterojunction interfaces , 2011 .

[57]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[58]  N. Koch,et al.  Band bending in conjugated polymer layers. , 2011, Physical review letters.

[59]  F. Flores,et al.  Modelling energy level alignment at organic interfaces and density functional theory. , 2009, Physical chemistry chemical physics : PCCP.

[60]  W. R. Salaneck,et al.  Energy level alignment regimes at hybrid organic–organic and inorganic–organic interfaces , 2007 .

[61]  G. Fortunato,et al.  Aging effects in pentacene thin-film transistors: Analysis of the density of states modification , 2006 .

[62]  Jun Wang,et al.  Organic heterojunction with reverse rectifying characteristics and its application in field-effect transistors , 2006 .

[63]  Xingyu Gao,et al.  Molecular orientation of CuPc thin films on C60/Ag(111) , 2009 .

[64]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[65]  D. Yan,et al.  Heterojunction Ambipolar Organic Transistors Fabricated by a Two‐Step Vacuum‐Deposition Process , 2006 .

[66]  B. Batlogg,et al.  Oxygen-related traps in pentacene thin films : Energetic position and implications for transistor performance , 2008, 0807.3001.

[67]  Chun-Sing Lee,et al.  Substrate effects on the electronic properties of an organic/organic heterojunction , 2006 .

[68]  F. Netzer,et al.  On validity of the Schottky-Mott rule in organic semiconductors: Sexithiophene on various substrates , 2007 .

[69]  Norbert Koch,et al.  Organic electronic devices and their functional interfaces. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[70]  Anja Haase,et al.  Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds , 2009 .

[71]  Norbert Koch,et al.  Design of Organic Semiconductors from Molecular Electrostatics , 2011 .

[72]  Hirohiko Fukagawa,et al.  The Role of the Ionization Potential in Vacuum‐Level Alignment at Organic Semiconductor Interfaces , 2007 .

[73]  O. Monti,et al.  Near- and far-field effects on molecular energy level alignment at an organic/electrode interface , 2010 .

[74]  Hong Liang Zhang,et al.  Molecular orientation of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride thin films at organic heterojunction interfaces , 2007 .

[75]  O. Konovalov,et al.  Real-time observation of structural and orientational transitions during growth of organic thin films. , 2006, Physical review letters.

[76]  D. Zahn,et al.  The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission , 2006 .

[77]  N. Koch,et al.  Ultrathin polythiophene films on an intrinsically conducting polymer electrode: Charge transfer induced valence states and interface dipoles , 2011 .

[78]  F. Schreiber,et al.  Impact of structural imperfections on the energy-level alignment in organic films , 2011 .

[79]  L. Mariucci,et al.  High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer , 2005 .

[80]  M. Niwano,et al.  Kelvin Probe Study of Band Bending at Organic Semiconductor/Metal Interfaces: Examination of Fermi Level Alignment , 2004 .

[81]  D. Milliron,et al.  Organic semiconductor interfaces: electronic structure and transport properties , 2000 .

[82]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[83]  K. Seki,et al.  Theory of bulk electron-hole recombination in a medium with energetic disorder , 2010 .

[84]  Brian A. Gregg,et al.  Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation , 2003 .

[85]  Yong-ki Kim,et al.  Energy level alignment at a charge generation interface between 4,4'-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11 -hexaazatriphenylene-hexacarbonitrile , 2009 .

[86]  Germà Garcia-Belmonte,et al.  Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements , 2009 .

[87]  Abhishek P. Kulkarni,et al.  Electron Transport Materials for Organic Light-Emitting Diodes , 2004 .

[88]  D V Lang,et al.  Amorphouslike density of gap states in single-crystal pentacene. , 2004, Physical review letters.

[89]  Bertram Batlogg,et al.  Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density , 2006 .

[90]  N. Koch Energy levels at interfaces between metals and conjugated organic molecules , 2008 .

[91]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[92]  William R. Salaneck,et al.  Fermi level pinning at interfaces with tetrafluorotetracyanoquinodimethane (F4-TCNQ): The role of integer charge transfer states , 2007 .

[93]  Antje Vollmer,et al.  Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. , 2008, Nature materials.

[94]  Hirohiko Fukagawa,et al.  Experimental estimation of the electric dipole moment and polarizability of titanyl phthalocyanine using ultraviolet photoelectron spectroscopy , 2006 .

[95]  Wei Chen,et al.  Molecular Orientation-Dependent Ionization Potential of Organic Thin Films , 2008 .

[96]  Fernando Flores,et al.  Doping-induced realignment of molecular levels at organic–organic heterojunctions , 2006 .

[97]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[98]  Antoine Kahn,et al.  Effect of electrical doping on molecular level alignment at organic–organic heterojunctions , 2003 .

[99]  Jenny Nelson,et al.  Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection , 2003 .

[100]  R. Cloots,et al.  Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition , 2000 .

[101]  S. Yim,et al.  Influence of intermolecular interactions on the structure of phthalocyanine layers in molecular thin film heterostructures , 2003 .

[102]  S. Sellner,et al.  Thickness-dependent structural transitions in fluorinated copper-phthalocyanine (F16CuPc) films. , 2006, Journal of the American Chemical Society.

[103]  Wei Chen,et al.  Molecular orientation transition of organic thin films on graphite: the effect of intermolecular electrostatic and interfacial dispersion forces. , 2008, Chemical communications.

[104]  Wei Chen,et al.  Effect of Gap States on the Orientation-Dependent Energy Level Alignment at the DIP/F16CuPc Donor–Acceptor Heterojunction Interfaces , 2011 .

[105]  W. R. Salaneck,et al.  Electronic structure of hybrid interfaces for polymer-based electronics , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[106]  R. Ramprasad,et al.  Dielectric properties of Cu-phthalocyanine systems from first principles , 2006 .

[107]  K. Walzer,et al.  Influence of the hole blocking layer on blue phosphorescent organic light-emitting devices using 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole as host material , 2010 .

[108]  H. von Seggern,et al.  Organic electronics: Enlightened organic transistors. , 2010, Nature materials.

[109]  Hong Liang Zhang,et al.  Tuning the hole injection barrier at the organic/metal interface with self-assembled functionalized aromatic thiols. , 2006, The journal of physical chemistry. B.

[110]  X. Zhu Electron transfer at molecule-metal interfzces: a two-photon photoemission study. , 2002, Annual review of physical chemistry.

[111]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[112]  N. Armstrong,et al.  Organic heterojunctions of layered perylene and phthalocyanine dyes: characterization with UV-photoelectron spectroscopy and luminescence quenching , 2009 .

[113]  Antoine Kahn,et al.  Energetics of metal–organic interfaces: New experiments and assessment of the field , 2009 .

[114]  Norbert Koch,et al.  Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds. , 2008, Journal of the American Chemical Society.

[115]  Donal D. C. Bradley,et al.  Bimolecular recombination losses in polythiophene: Fullerene solar cells , 2008 .

[116]  James C. Blakesley,et al.  Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells , 2011 .

[117]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[118]  N. Armstrong,et al.  Titanyl phthalocyanine/C60 heterojunctions: Band-edge offsets and photovoltaic device performance , 2008 .

[119]  Wei Chen,et al.  Orientationally ordered C60 on p-sexiphenyl nanostripes on Ag111. , 2008, ACS nano.

[120]  Antoine Kahn,et al.  Organic semiconductor heterointerfaces containing bathocuproine , 1999 .

[121]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[122]  Neal R Armstrong,et al.  Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices. , 2009, Macromolecular rapid communications.

[123]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[124]  Stephen M. Martin,et al.  Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence x-ray diffraction. , 2004, Journal of the American Chemical Society.

[125]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[126]  Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N,N′-diphenyl-N,N′-bis(l-naphthyl)-1,1′biphenyl-4,4″diamine molecular organic semiconductor system , 1999 .

[127]  J. Pflaum,et al.  Ultrathin Films of Diindenoperylene on Graphite and SiO2 , 2009 .

[128]  J. Pflaum,et al.  Charge Separation at Molecular Donor–Acceptor Interfaces: Correlation Between Morphology and Solar Cell Performance , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[129]  Wei Chen,et al.  Probing the ultrafast electron transfer at the CuPc∕Au(111) interface , 2006 .

[130]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[131]  Norbert Koch,et al.  Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films , 2003 .

[132]  L. Piper,et al.  Electronic Structure of C60/Phthalocyanine/ITO Interfaces Studied using Soft X-ray Spectroscopies , 2010 .