Syntax and Semantics of Quantitative Type Theory

We present Quantitative Type Theory, a Type Theory that records usage information for each variable in a judgement, based on a previous system by McBride. The usage information is used to give a realizability semantics using a variant of Linear Combinatory Algebras, refining the usual realizability semantics of Type Theory by accurately tracking resource behaviour. We define the semantics in terms of Quantitative Categories with Families, a novel extension of Categories with Families for modelling resource sensitive type theories.

[1]  Conor McBride,et al.  Inductive Families Need Not Store Their Indices , 2003, TYPES.

[2]  Yu Zhang,et al.  A Linear Dependent Type Theory , 2016 .

[3]  Nick Benton,et al.  Integrating Linear and Dependent Types , 2015, POPL.

[4]  Marco Gaboardi,et al.  A Core Quantitative Coeffect Calculus , 2014, ESOP.

[5]  Valeria de Paiva,et al.  Fibrational Modal Type Theory , 2016, LSFA.

[6]  Martin Hofmann,et al.  Realizability models and implicit complexity , 2011, Theor. Comput. Sci..

[7]  Martin Hofmann,et al.  Syntax and semantics of dependent types , 1997 .

[8]  Edwin Brady,et al.  Idris, a general-purpose dependently typed programming language: Design and implementation , 2013, Journal of Functional Programming.

[9]  Alan Mycroft,et al.  Coeffects: a calculus of context-dependent computation , 2014, ICFP.

[10]  Frank Pfenning,et al.  A Linear Logical Framework , 2002, Inf. Comput..

[11]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[12]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[13]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[14]  Dan R. Ghica,et al.  Bounded Linear Types in a Resource Semiring , 2014, ESOP.

[15]  Alexandre Miquel The Implicit Calculus of Constructions , 2001, TLCA.

[16]  Peter Dybjer,et al.  Internal Type Theory , 1995, TYPES.

[17]  Nathan Mishra-Linger,et al.  Erasure and Polymorphism in Pure Type Systems , 2008, FoSSaCS.

[18]  Frank Pfenning,et al.  Intensionality, extensionality, and proof irrelevance in modal type theory , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[19]  Daniel R. Licata,et al.  A Fibrational Framework for Substructural and Modal Logics , 2017, FSCD.

[20]  Ichiro Hasuo,et al.  Memoryful geometry of interaction: from coalgebraic components to algebraic effects , 2014, CSL-LICS.

[21]  Michael Shulman,et al.  Brouwer's fixed-point theorem in real-cohesive homotopy type theory , 2015, Mathematical Structures in Computer Science.

[22]  Dan R. Ghica,et al.  Geometry of synthesis: a structured approach to VLSI design , 2007, POPL '07.

[23]  Samson Abramsky,et al.  A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..

[24]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[25]  J. Gregory Morrisett,et al.  L3: A Linear Language with Locations , 2007, Fundam. Informaticae.

[26]  Ugo Dal Lago A Short Introduction to Implicit Computational Complexity , 2010, ESSLLI.

[27]  Samson Abramsky,et al.  Geometry of Interaction and linear combinatory algebras , 2002, Mathematical Structures in Computer Science.

[28]  Torben Æ. Mogensen Types for 0, 1 or Many Uses , 1997, Implementation of Functional Languages.

[29]  Matthijs Vákár A Categorical Semantics for Linear Logical Frameworks , 2015, FoSSaCS.

[30]  K. Terui Light Affine Calculus and Polytime Strong Normalization. , 2001, LICS 2001.

[31]  Christine Paulin-Mohring,et al.  The coq proof assistant reference manual , 2000 .

[32]  Dag Normann,et al.  Higher-Order Computability , 2015, Theory and Applications of Computability.

[33]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[34]  Naohiko Hoshino Linear Realizability , 2007, CSL.