MAS: a versatile Landau-fluid eigenvalue code for plasma stability analysis in general geometry

We have developed a new global eigenvalue code, multiscale analysis for plasma stabilities (MAS), for studying plasma problems with wave toroidal mode number (n) and frequency (ω) in a broad range of interest in general tokamak geometry, based on a five-field Landau-fluid description of thermal plasmas. Beyond keeping the necessary plasma fluid response, we further retain the important kinetic effects including diamagnetic drift, ion finite Larmor radius, finite parallel electric field ( E|| ), ion and electron Landau resonances in a self-consistent and non-perturbative manner without sacrificing the attractive efficiency in computation. The physical capabilities of the code are evaluated and examined in terms of both theory and simulation. In theory, the comprehensive Landau-fluid model implemented in MAS can be reduced to the well-known ideal magnetohydrodynamic (MHD) model, electrostatic ion-fluid model, and drift-kinetic model in various limits, which clearly delineates the physics validity regime. In simulation, MAS has been well benchmarked with theory and other gyrokinetic and kinetic-MHD hybrid codes in a manner of adopting the unified physical and numerical framework, which covers the kinetic Alfvén wave, ion sound wave, low-n kink, high-n ion temperature gradient mode and kinetic ballooning mode. Moreover, MAS is successfully applied to model the Alfvén eigenmode (AE) activities in DIII-D discharge #159243, which faithfully captures the frequency sweeping of reversed shear AE, the tunneling damping of toroidal AE, as well as the polarization characteristics of kinetic beta-induced AE and beta-induced Alfvén-acoustic eigenmode being consistent with former gyrokinetic theory and simulation. With respect to the key progress contributed to the community, MAS has the advantage of combining rich physics ingredients, realistic global geometry and high computation efficiency together for plasma stability analysis in the linear regime.

[1]  H. Li,et al.  Simulation prediction of micro-instability transition and associated particle transport in tokamak plasmas , 2022, Nuclear Fusion.

[2]  Liu Chen,et al.  Theoretical studies of low-frequency Alfvén modes in tokamak plasmas , 2021, Plasma Physics and Controlled Fusion.

[3]  H. Lütjens,et al.  Verification and validation of linear gyrokinetic and kinetic-MHD simulations for internal kink instability in DIII-D tokamak , 2021, Nuclear Fusion.

[4]  T. Shi,et al.  Multiple Alfvén eigenmodes induced by energetic electrons and nonlinear mode couplings in EAST radio-frequency heated H-mode plasmas , 2021 .

[5]  T. Hahm,et al.  Gyrokinetic simulation of low-frequency Alfvénic modes in DIII-D tokamak , 2021, Nuclear Fusion.

[6]  D. Spong,et al.  ‘BAAE’ instabilities observed without fast ion drive , 2020, Nuclear Fusion.

[7]  J. Bao,et al.  Effects of Plasma Diamagnetic Drift on Alfvén Continua and Discrete Eigenmodes in Tokamaks , 2020, Journal of Fusion Energy.

[8]  E. Strumberger,et al.  Extended full-MHD simulation of non-linear instabilities in tokamak plasmas , 2020, Physics of Plasmas.

[9]  Y. Xiao,et al.  Drift Alfvén energetic particle stability with circulating particles , 2020, Physics of Plasmas.

[10]  E. Giovannozzi,et al.  On the polarization of shear Alfvén and acoustic continuous spectra in toroidal plasmas , 2020, Journal of Plasma Physics.

[11]  Ming Xu,et al.  Excitation of the beta-induced Alfvén-acoustic eigenmode during sawtooth-like oscillation in EAST , 2020, Nuclear Fusion.

[12]  R. White,et al.  Mechanisms of energetic-particle transport in magnetically confined plasmas , 2019, Physics of Plasmas.

[13]  J. Graves,et al.  Reduced models for parallel magnetic field fluctuations and their impact on pressure gradient driven MHD instabilities in axisymmetric toroidal plasmas , 2019, Plasma Physics and Controlled Fusion.

[14]  G. Vlad,et al.  Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry , 2019, Physics of Plasmas.

[15]  A. Bottino,et al.  Verification and validation of integrated simulation of energetic particles in fusion plasmas , 2019, Nuclear Fusion.

[16]  P. Lauber,et al.  Kinetic effects of thermal ions and energetic particles on discrete kinetic BAE mode generation and symmetry breaking , 2018, Nuclear Fusion.

[17]  P. Lauber,et al.  Gyrokinetic analysis of low-n shear Alfvén and ion sound wave spectra in a high-beta tokamak plasma , 2017 .

[18]  Zhihong Lin,et al.  Gyrokinetic particle simulations of the effects of compressional magnetic perturbations on drift-Alfvenic instabilities in tokamaks , 2017 .

[19]  Zhihong Lin,et al.  Excitation of low frequency Alfven eigenmodes in toroidal plasmas , 2017 .

[20]  Liu Chen,et al.  On energetic-particle excitations of low-frequency Alfvén eigenmodes in toroidal plasma , 2017 .

[21]  D. Spong,et al.  Analysis of Alfvén eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model , 2017, 1704.01632.

[22]  Laurent Villard,et al.  Computational challenges in magnetic-confinement fusion physics , 2016, Nature Physics.

[23]  Zhihong Lin,et al.  Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode , 2016 .

[24]  R. White,et al.  Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport. , 2016, Physical review letters.

[25]  Liu Chen,et al.  Global theory of beta-induced Alfvén eigenmode excited by energetic ions , 2015 .

[26]  Yong Xiao,et al.  Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes , 2015 .

[27]  Liu Chen,et al.  Theory on excitations of drift Alfvén waves by energetic particles. II. The general fishbone-like dispersion relation , 2014 .

[28]  Liu Chen,et al.  Theory on excitations of drift Alfvén waves by energetic particles. I. Variational formulation , 2014 .

[29]  N. Gorelenkov,et al.  Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak , 2014 .

[30]  A. Dimits,et al.  A fast non-Fourier method for Landau-fluid operatorsa) , 2014 .

[31]  P. Lauber,et al.  Super-thermal particles in hot plasmas , 2013 .

[32]  Ihor Holod,et al.  Radial localization of toroidicity-induced Alfvén eigenmodes. , 2013, Physical review letters.

[33]  D. Spong,et al.  Simulation of Alfvén frequency cascade modes in reversed shear-discharges using a Landau-closure model , 2013 .

[34]  P. McCarthy,et al.  Low-frequency Alfvén eigenmodes during the sawtooth cycle at ASDEX Upgrade , 2012 .

[35]  Ihor Holod,et al.  Gyrokinetic simulation model for kinetic magnetohydrodynamic processes in magnetized plasmas , 2012 .

[36]  L. Chen,et al.  Theory and simulation of discrete kinetic beta induced Alfvén eigenmode in tokamak plasmas , 2010 .

[37]  W. Dorland,et al.  Parallel magnetic field perturbations in gyrokinetic simulations , 2010 .

[38]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[39]  Ihor Holod,et al.  Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry , 2009 .

[40]  N. Hicks,et al.  Kinetic Alfvén eigenmodes at ASDEX Upgrade , 2009 .

[41]  F. Zonca,et al.  Effects of trapped particle dynamics on the structures of a low-frequency shear Alfvén continuous spectrum , 2009 .

[42]  I. T. Chapman,et al.  Toroidal self-consistent modeling of drift kinetic effects on the resistive wall mode , 2008 .

[43]  G. Fu,et al.  Kinetic damping of Alfvén eigenmodes in general tokamak geometry , 2008 .

[44]  S. Günter,et al.  Damping and drive of low-frequency modes in tokamak plasmas , 2008 .

[45]  W. W. Heidbrink,et al.  Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas , 2008 .

[46]  K. Tritz,et al.  Predictions and observations of global beta-induced Alfvén—acoustic modes in JET and NSTX , 2007 .

[47]  J. Contributors,et al.  Predictions and observations of low-shear beta-induced shear Alfvén–acoustic eigenmodes in toroidal plasmas , 2007 .

[48]  Sibylle Günter,et al.  LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks , 2007, J. Comput. Phys..

[49]  K. Ikeda Progress in the ITER Physics Basis , 2007 .

[50]  G. Fu,et al.  Effects of pressure gradient on existence of Alfvén cascade modes in reversed shear tokamak plasmas , 2006 .

[51]  S. Pinches,et al.  Kinetic properties of shear Alfven eigenmodes in tokamak plasmas , 2005 .

[52]  S. Sharapov,et al.  Plasma pressure effect on Alfvén cascade eigenmodes , 2005 .

[53]  Scott Kruger,et al.  Computational modeling of fully ionized magnetized plasmas using the fluid approximation , 2005 .

[54]  G. Fu,et al.  Kinetic damping of toroidal Alfvén eigenmodes , 2005 .

[55]  G. Fu,et al.  Kinetic Damping of Toroidal Alfven Eigenmodes , 2005 .

[56]  Chio Cheng,et al.  Trapped electron stabilization of ballooning modes in low aspect ratio toroidal plasmas , 2004 .

[57]  S. Pinches,et al.  Theory of Alfvén eigenmodes in shear reversed plasmas , 2003 .

[58]  H. Wilson,et al.  Numerical studies of edge localized instabilities in tokamaks , 2002 .

[59]  S. Pinches,et al.  Theoretical Interpretation of Alfvén Cascades in Tokamaks with Nonmonotonic q Profiles , 2001 .

[60]  G. Hammett,et al.  A Landau fluid model for electromagnetic plasma microturbulence , 2001 .

[61]  C. Bourdelle,et al.  Global simulations of ion turbulence with magnetic shear reversal , 2001 .

[62]  Zhihong Lin,et al.  A fluid-kinetic hybrid electron model for electromagnetic simulations , 2001 .

[63]  Current Drive ITER Physics Basis Chapter 5: Physics of energetic ions , 2000 .

[64]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[65]  Liu Chen,et al.  Destabilization of energetic particle modes by localized particle sources , 1999 .

[66]  W. Horton Drift waves and transport , 1999 .

[67]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[68]  J. P. Goedbloed,et al.  CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas☆ , 1998 .

[69]  Liu Chen,et al.  Existence of discrete modes in an unstable shear Alfvén continuous spectrum , 1997 .

[70]  Liu Chen,et al.  Kinetic theory of low-frequency Alfvén modes in tokamaks , 1996 .

[71]  Campbell,et al.  Direct measurement of the damping of toroidicity-induced Alfvén eigenmodes. , 1995, Physical review letters.

[72]  L. L. Lao,et al.  A numerical study of the high‐n shear Alfvén spectrum gap and the high‐n gap mode , 1992 .

[73]  S. Mahajan,et al.  Kinetic theory of toroidicity-induced alfvén eigenmodes , 1992 .

[74]  H. Berk,et al.  Continuum damping of low‐n toroidicity‐induced shear Alfvén eigenmodes , 1992 .

[75]  A. Bondeson,et al.  Resistive toroidal stability of internal kink modes in circular and shaped tokamaks , 1992 .

[76]  Chio-Zong Cheng,et al.  Kinetic extensions of magnetohydrodynamics for axisymmetric toroidal plasmas , 1992 .

[77]  Lindberg,et al.  Continuum damping of high-mode-number toroidal Alfvén waves. , 1991, Physical review letters.

[78]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[79]  J. W. Van Dam,et al.  Excitation of the toroidicity-induced shear Alfvén eigenmode by fusion alpha particles in an ignited tokamak , 1989 .

[80]  M. Chance,et al.  Nova: a nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas , 1987 .

[81]  M. Rosenbluth,et al.  Excitation of internal kink modes by trapped energetic beam ions , 1984 .

[82]  Allen H. Boozer,et al.  Plasma equilibrium with rational magnetic surfaces , 1981 .

[83]  R. J. Hastie,et al.  High mode number stability of an axisymmetric toroidal plasma , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[84]  A. Hasegawa,et al.  Kinetic processes in plasma heating by resonant mode conversion of Alfvén wave , 1976 .

[85]  B. Kadomtsev Disruptive instability in tokamaks , 1975 .

[86]  J. Bao,et al.  A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas , 2017 .

[87]  X.Q. Xu,et al.  Global kinetic ballooning mode simulations in BOUT++ , 2016 .

[88]  W. W. Heidbrinkb Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas a … , 2008 .

[89]  Mark Ballora,et al.  Singularity , 2006, SIGGRAPH Art Gallery.

[90]  S. Pinches,et al.  Theoretical Interpretation of Alfv en Cascades in Tokamaks with Non-monotonic q-pro les , 2001 .

[91]  ITER Physics Basis Editors,et al.  Chapter 2: Plasma confinement and transport , 1999 .

[92]  ITER Physics Expert Group on Disruptions, Plasma C,et al.  Chapter 3: MHD stability, operational limits and disruptions , 1999 .

[93]  Liu Chen,et al.  Kinetic theory of low-frequency Alfvén modes in tokamaks , 1996 .

[94]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .

[95]  Ihor Holod,et al.  Iop Publishing Plasma Physics and Controlled Fusion Global Gyrokinetic Particle Simulations with Kinetic Electrons , 2022 .