Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration.

[1]  G. Moonen,et al.  Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. , 2000, Journal of biomedical materials research.

[2]  Jean-Marie A Parel,et al.  Poly(α-hydroxyacids) for application in the spinal cord: Resorbability and biocompatibility with adult rat schwann cells and spinal cord , 1998 .

[3]  J. Guest,et al.  The Ability of Human Schwann Cell Grafts to Promote Regeneration in the Transected Nude Rat Spinal Cord , 1997, Experimental Neurology.

[4]  J. Parnavelas,et al.  Serotonin Promotes the Survival of Cortical Glutamatergic Neuronsin Vitro , 1997, Experimental Neurology.

[5]  V. Maquet,et al.  Design of Macroporous Biodegradable Polymer Scaffolds for Cell Transplantation , 1997 .

[6]  M. Oudega,et al.  A combination of insulin‐like growth factor‐I and platelet‐derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord , 1997, Glia.

[7]  R. Gross,et al.  Enzymatic degradability of poly(lactide) : Effects of chain stereochemistry and material crystallinity , 1996 .

[8]  M. Oudega,et al.  Nerve Growth Factor Promotes Regeneration of Sensory Axons into Adult Rat Spinal Cord , 1996, Experimental Neurology.

[9]  Yihai Cao,et al.  Spinal Cord Repair in Adult Paraplegic Rats: Partial Restoration of Hind Limb Function , 1996, Science.

[10]  K. Leong,et al.  Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. , 1996, Journal of biomedical materials research.

[11]  V. Maquet,et al.  Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. , 1996, Journal of biomedical materials research.

[12]  E. Joosten,et al.  Collagen implants and cortico‐spinal axonal growth after mid‐thoracic spinal cord lesion in the adult rat , 1995, Journal of neuroscience research.

[13]  Suming Li,et al.  Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. , 1995, Biomaterials.

[14]  N. Kleitman,et al.  Axonal regeneration into Schwann cell‐seeded guidance channels grafted into transected adult rat spinal cord , 1995, The Journal of comparative neurology.

[15]  S. Woerly,et al.  Evaluation of two cross-linked collagen gels implanted in the transected spinal cord , 1993, Brain Research Bulletin.

[16]  J. Houlé Regeneration of dorsal root axons is related to specific non-neuronal cells lining NGF-treated intraspinal nitrocellulose implants , 1992, Experimental Neurology.

[17]  P. Aebischer,et al.  Comparison of dorsal and ventral spinal root regeneration through semipermeable guidance channels , 1991, The Journal of comparative neurology.

[18]  M. Dauzvardis,et al.  Carbon filament implants promote axonal growth across the transected rat spinal cord , 1991, Brain Research.

[19]  A. Aguayo,et al.  Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. , 1981, Science.

[20]  L. Vargova,et al.  Heterogeneous PHPMA hydrogels for tissue repair and axonal regeneration in the injured spinal cord. , 1998, Journal of biomaterials science. Polymer edition.

[21]  Aqing Chen,et al.  Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord , 1997, Journal of neurocytology.

[22]  Christian Grandfils,et al.  Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation , 1996 .