Classifying image texture with statistical landscape features

This paper proposes to use three-dimensional information derived from the graph of an image function for texture description. The graph of an image function is a rumpled surface appearing like a landscape. To characterize the texture through this landscape, six novel texture feature curves based on the statistics of the geometrical and topological properties of the solids shaped by the graph and a variable horizontal plane are used. The proposed statistical landscape features have been shown by systematic experiments to offer very low error rates on a large subset of the Brodatz texture album having excluded some nonhomogeneous images, the entire Brodatz texture set, as well as the VisTex texture collection.

[1]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[2]  James Michael Coggins,et al.  A framework for texture analysis based on spatial filtering , 1983 .

[3]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[4]  Aleksandra Mojsilovic,et al.  On the Selection of an Optimal Wavelet Basis for Texture Characterization , 1998, ICIP.

[5]  Maria Petrou,et al.  The Use of Boolean Model for Texture Analysis of Grey Images , 1999, Comput. Vis. Image Underst..

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  Stéphane Mallat,et al.  The Texture Gradient Equation for Recovering Shape from Texture , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Peng Wang,et al.  Spatial texture analysis: a comparative study , 2002, Object recognition supported by user interaction for service robots.

[9]  Chi-Man Pun,et al.  Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[11]  Paul T. Jackway,et al.  Granolds: a novel texture representation , 2000, Pattern Recognit..

[12]  Anil K. Jain,et al.  Is there any texture in the image? , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[13]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[15]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[16]  Krishnamoorthy Sivakumar,et al.  Morphologically Constrained GRFs: Applications to Texture Synthesis and Analysis , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Vittorio Murino,et al.  Noisy texture classification: A higher-order statistics approach , 1998, Pattern Recognit..

[18]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[19]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[20]  Ajai Jain,et al.  The Handbook of Pattern Recognition and Computer Vision , 1993 .

[21]  Rama Chellappa,et al.  Multiresolution Gauss-Markov random field models for texture segmentation , 1997, IEEE Trans. Image Process..

[22]  Mark S. Nixon,et al.  Statistical geometrical features for texture classification , 1995, Pattern Recognit..

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  Robert Azencott,et al.  Texture Classification Using Windowed Fourier Filters , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[26]  Lance M. Kaplan Extended fractal analysis for texture classification and segmentation , 1999, IEEE Trans. Image Process..

[27]  DeLiang Wang,et al.  Texture classification using spectral histograms , 2003, IEEE Trans. Image Process..

[28]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Arivazhagan Selvaraj,et al.  Texture classification using wavelet transform , 2003, Pattern Recognit. Lett..

[30]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[31]  Alireza Khotanzad,et al.  Modeling Textured Images Using Generalized Long Correlation Models , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Richard W. Conners,et al.  A Theoretical Comparison of Texture Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Kenneth I. Laws,et al.  Rapid Texture Identification , 1980, Optics & Photonics.

[35]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[36]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Larry D. Hostetler,et al.  Optimization of k nearest neighbor density estimates , 1973, IEEE Trans. Inf. Theory.

[38]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.