Fixed point theorems in controlled rectangular metric spaces

In this paper, we introduce an extension of rectangular metric spaces called controlled rectangular metric spaces, by changing the rectangular inequality as follows: d(x, y) ≤ α(x, u)d(x, u) + α(u, v)d(u, v) + α(v, y)d(v, y), for all distinct x, y, u, v ∈ X with the function α : X ×X → [1,∞[. We also establish some fixed point theorems for self-mappings defined on such spaces. Our main results extends and improves many results existing in the literature. Moreover, an illustrative example is presented to support the obtained results.

[1]  W. Sintunavarat Nonlinear integral equations with new admissibility types in b-metric spaces , 2016 .

[2]  S. Czerwik,et al.  Contraction mappings in $b$-metric spaces , 1993 .

[3]  Simeon Reich,et al.  Some Remarks Concerning Contraction Mappings , 1971, Canadian Mathematical Bulletin.

[4]  Vahid Parvaneh,et al.  New fixed point results in b-rectangular metric spaces , 2016 .

[5]  William A. Kirk,et al.  Generalized metrics and Caristi’s theorem , 2013, Fixed Point Theory and Applications.

[6]  R. Kannan,et al.  Some Results on Fixed Points—II , 1969 .

[7]  A Branciari,et al.  A fixed point theorem of Banach--Caccioppoli type on a class of generalized metric spaces , 2000, Publicationes Mathematicae Debrecen.

[8]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[9]  M. Rossafi,et al.  Fixed-Point Theorem for Nonlinear F -Contraction via w -Distance , 2020, Advances in Mathematical Physics.

[10]  M. Rossafi,et al.  New Fixed Point Theorems for θ ‐ ϕ -Contraction on Rectangular b -Metric Spaces , 2020 .

[11]  Mohamed Aamri,et al.  Fixed-Point Theorems for θ - ϕ -Contraction in Generalized Asymmetric Metric Spaces , 2020, Int. J. Math. Math. Sci..

[12]  Reny George,et al.  Rectangular b-metric space and contraction principles , 2015 .

[13]  S. Radenović,et al.  A note on the paper: “Nonlinear integral equations with new admissibility types in b-metric spaces” , 2017 .