Regularization under diffusion and anti-concentration of temperature

Consider a non-negative function $f : \mathbb R^n \to \mathbb R_+$ such that $\int f\,d\gamma_n = 1$, where $\gamma_n$ is the $n$-dimensional Gaussian measure. If $f$ is semi-log-convex, i.e. if there exists a number $\beta \geq 1$ such that for all $x \in \mathbb R^n$, the eigenvalues of $\nabla^2 \log f(x)$ are at least $-\beta$, then $f$ satisfies an improved form of Markov's inequality: For all $\alpha > e^3$, \[ \gamma_n(\{x \in \mathbb R^n : f(x) > \alpha \}) \leq \frac{1}{\alpha} \cdot \frac{C\beta (\log \log \alpha)^{4}}{\sqrt{\log \alpha}}, \] where $C$ is a universal constant. The bound is optimal up to a factor of $C \sqrt{\beta} (\log \log \alpha)^{4}$, as it is met by translations and scalings of the standard Gaussian density. In particular, this implies that the mass on level sets of a probability density decays uniformly under the Ornstein-Uhlenbeck semigroup. This confirms positively the Gaussian case of Talagrand's convolution conjecture (1989).

[1]  Edward Nelson The free Markoff field , 1973 .

[2]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[3]  William G. Faris Diffusion, quantum theory, and radically elementary mathematics , 2006 .

[4]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[5]  S. Chatterjee Superconcentration and Related Topics , 2014 .

[6]  rian Dilvies,et al.  Hypercontractivity : A Bibliographic Review , 2022 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[9]  K. Ball,et al.  L 1 -SMOOTHING FOR THE ORNSTEIN–UHLENBECK SEMIGROUP. , 2013 .

[10]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[11]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[12]  S. Bobkov,et al.  Modified Logarithmic Sobolev Inequalities in Discrete Settings , 2006 .

[13]  Hans Föllmer,et al.  An entropy approach to the time reversal of diffusion processes , 1985 .

[14]  C. Villani Topics in Optimal Transportation , 2003 .

[15]  J. Lehec,et al.  Representation formula for the entropy and functional inequalities , 2010, 1006.3028.

[16]  Ronen Eldan A two-sided estimate for the Gaussian noise stability deficit , 2013, 1307.2781.

[17]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.

[18]  P. Dupuis,et al.  A variational representation for certain functionals of Brownian motion , 1998 .

[19]  C. Borell,et al.  Diffusion Equations and Geometric Inequalities , 2000 .

[20]  Tzong-Yow Lee,et al.  Logarithmic Sobolev inequality for some models of random walks , 1998 .

[21]  Leonard Gross,et al.  Chapter Two. Hypercontractivity, Logarithmic Sobolev Inequalities, and Applications: A Survey of Surveys , 2006 .

[22]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[23]  M. Talagrand A conjecture on convolution operators, and a non-Dunford-Pettis operator onL1 , 1989 .

[24]  W. Beckner Inequalities in Fourier analysis , 1975 .

[25]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  A. Bonami Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .

[27]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[28]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[29]  Barry Simon,et al.  The P(φ) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics , 1975 .

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  Ronen Eldan,et al.  Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme , 2012, 1203.0893.

[32]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .