Compressive Multidimensional Harmonic Retrieval with Prior Knowledge

This paper concerns the problem of estimating multidimensional (MD) frequencies using prior knowledge of the signal spectral sparsity from partial time samples. In many applications, such as radar, wireless communications, and super-resolution imaging, some structural information about the signal spectrum might be known beforehand. Suppose that the frequencies lie in given intervals, the goal is to improve the frequency estimation performance by using the prior information. We study the MD Vandermonde decomposition of block Toeplitz matrices in which the frequencies are restricted to given intervals. We then propose to solve the frequency-selective atomic norm minimization by converting them into semidefinite program based on the MD Vandermonde decomposition. Numerical simulation results are presented to illustrate the good performance of the proposed method.

[1]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[2]  Marco Lops,et al.  Adaptive Interference Removal for Uncoordinated Radar/Communication Coexistence , 2017, IEEE Journal of Selected Topics in Signal Processing.

[3]  Lihua Xie,et al.  Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution , 2015, IEEE Transactions on Information Theory.

[4]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[5]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[6]  Xiaodong Wang,et al.  Super-Resolution Delay-Doppler Estimation for OFDM Passive Radar , 2016, IEEE Transactions on Signal Processing.

[7]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[8]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[11]  Xiaodong Wang,et al.  Multi-dimensional Spectral Super-Resolution with Prior Knowledge via Frequency-Selective Vandermonde Decomposition and ADMM , 2019, ArXiv.

[12]  Shengli Zhou,et al.  Signal Processing for Passive Radar Using OFDM Waveforms , 2010, IEEE Journal of Selected Topics in Signal Processing.

[13]  Yuxin Chen,et al.  Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.

[14]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[15]  A. Lee Swindlehurst,et al.  A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .

[16]  Weiyu Xu,et al.  Spectral Super-Resolution With Prior Knowledge , 2014, IEEE Transactions on Signal Processing.

[17]  Xiaodong Wang,et al.  Multi-Target Position and Velocity Estimation Using OFDM Communication Signals , 2019, IEEE Transactions on Communications.

[18]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[19]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[20]  Lihua Xie,et al.  Frequency-Selective Vandermonde Decomposition of Toeplitz Matrices With Applications , 2016, Signal Process..

[21]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[22]  Urbashi Mitra,et al.  Multi-Scale Multi-Lag Channel Estimation Using Low Rank Approximation for OFDM , 2015, IEEE Transactions on Signal Processing.

[23]  Lieven Vandenberghe,et al.  Extensions of semidefinite programming methods for atomic decomposition , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .