Neurochemical and morphological changes associated with human epilepsy

[1]  N. Kline,et al.  Treatment of two hundred disturbed psychotics with reserpine. , 1955, Journal of the American Medical Association.

[2]  G. V. Goddard,et al.  A permanent change in brain function resulting from daily electrical stimulation. , 1969, Experimental neurology.

[3]  P. Mcgeer,et al.  Glutamic acid decarboxylase in Parkinson's disease and epilepsy , 1971, Neurology.

[4]  T. Rasmussen,et al.  Amino acid content of epileptogenic human brain: focal versus surrounding regions. , 1972, Brain research.

[5]  T. Sourkes,et al.  Use of cerebrospinal fluid drawn at pneumoencephalography in the study of monoamine metabolism in man , 1974, Journal of neurology, neurosurgery, and psychiatry.

[6]  C. Plum FREE AMINO ACID LEVELS IN THE CEREBROSPINAL FLUID OF NORMAL HUMANS AND THEIR VARIATION IN CASES OF EPILEPSY AND SPIELMEYER‐VOGT‐BATTEN DISEASE , 1974, Journal of neurochemistry.

[7]  R. Mutani,et al.  Free Amino Acids in Serum of Patients with Epilepsy: Significant Increase in Taurine , 1975, Epilepsia.

[8]  Joseph B. Martin,et al.  Depressant action of TRH, LH-RH and somatostatin on activity of central neurones , 1975, Nature.

[9]  G. Ojemann,et al.  Human epileptic brain Na, K ATPase activity and phenytoin concentrations. , 1975, Archives of neurology.

[10]  J. Wada,et al.  Amino acids in human epileptogenic foci. , 1975, Archives of neurology.

[11]  T. Turský,et al.  Formation of glutamate and GABA in epileptogenic tissue from human hippocampus in vitro. , 1976, Acta neurochirurgica.

[12]  Reynolds Eh Neurological aspects of folate and vitamin B12 metabolism. , 1976 .

[13]  L. Iversen,et al.  Huntington's chorea. Changes in neurotransmitter receptors in the brain. , 1976, The New England journal of medicine.

[14]  J. Fields,et al.  Neurotransmitter receptor alterations in Parkinson's disease. , 1977, Life sciences.

[15]  J. Kelly,et al.  Is somatostatin an excitatory transmitter in the hippocampus? , 1978, Nature.

[16]  P. Davies,et al.  REGIONAL DISTRIBUTION OF MONOAMINES AND THEIR METABOLITES IN THE HUMAN BRAIN , 1978, Journal of neurochemistry.

[17]  S. Gauthier,et al.  Monoamine metabolites in the CSF of epileptic patients , 1979, Neurology.

[18]  E. Perry,et al.  Acetylcholine and choline levels in post-mortem human brain tissue: preliminary observations in Alzheimer's disease. , 1980, Life sciences.

[19]  W. C. Purdy,et al.  Tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in human cerebrospinal fluid: interrelationships and the influence of age, sex, epilepsy and anticonvulsant drugs. , 1980, Journal of neurology, neurosurgery, and psychiatry.

[20]  C. Marescaux,et al.  Increased gamma-aminobutyric acid (GABA), homocarnosine and β-alanine in cerebrospinal fluid of patients treated with γ-vinyl GABA (4-amino-hex-5-enoic acid) , 1981 .

[21]  P. Morselli Neurotransmitters, seizures, and epilepsy , 1981 .

[22]  M. E. Corcoran,et al.  Depletion of noradrenaline and amygdaloid kindling , 1981, Experimental Neurology.

[23]  T. Perry,et al.  Amino acid abnormalities in epileptogenic foci , 1981, Neurology.

[24]  B. Manyam,et al.  Cerebrospinal fluid GABA measurements: basic and clinical considerations. , 1983, Clinical neuropharmacology.

[25]  H. Frenk Pro- and anticonvulsant actions of morphine and the endogenous opioids: Involvement and interactions of multiple opiate and non-opiate systems , 1983, Brain Research Reviews.

[26]  R. Fariello Neurotransmitters, seizures, and epilepsy II , 1984 .

[27]  D. Woodbury,et al.  The Epilepsies: A Critical Review , 1984 .

[28]  A. Olivier,et al.  Enzyme changes in actively spiking areas of human epileptic cerebral cortex , 1984, Neurology.

[29]  J. Engel The use of positron emission tomographic scanning in epilepsy , 1984, Annals of neurology.

[30]  Comparative studies of the gaba system in neurosurgical brain specimens of epileptic and non-epileptic patients , 1984 .

[31]  T. Grisar Glial and neuronal Na+‐K+ pump in epilepsy , 1984, Annals of neurology.

[32]  M. W. Brown,et al.  The distribution of Timm's stain in the nonsulphide‐perfused human hippocampal formation , 1984, The Journal of comparative neurology.

[33]  B. Engelsen,et al.  Increased concentrations of aspartic acid in the cerebrospinal fluid of patients with epilepsy and trigeminal neuralgia: an effect of medication? , 1984, Acta neurologica Scandinavica.

[34]  M. Maheshwari,et al.  5‐HIAA in Cerebrospinal Fluid of Patients with Status Epilepticus , 1984, Epilepsia.

[35]  B. Meldrum Amino Acid Neurotransmitters and New Approaches to Anticonvulsant Drug Action , 1984, Epilepsia.

[36]  J. Holaday,et al.  Endogenous opioid systems: Physiological role in the self-limitation of seizures , 1985, Brain Research.

[37]  W. Löscher,et al.  Cerebrospinal Fluid γ‐Aminobutyric Acid Levels in Children with Different Types of Epilepsy: Effect of Anticonvulsant Treatment , 1985, Epilepsia.

[38]  T. Higuchi,et al.  A Study of Somatostatin Receptors in Amygdaloid‐Kindled Rat Brain , 1984, Folia psychiatrica et neurologica japonica.

[39]  G. V. Goddard,et al.  Is Adenosine an Endogenous Anticonvulsant? , 1985, Epilepsia.

[40]  D. Tauck,et al.  Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. Racine,et al.  Kindling mechanisms: Current progress on an experimental epilepsy model , 1986, Progress in Neurobiology.

[42]  M. Dragunow Endogenous anticonvulsant substances , 1986, Neuroscience & Biobehavioral Reviews.

[43]  A. Olivier,et al.  α‐1 Adrenoceptors are decreased in human epileptic foci , 1986, Annals of neurology.

[44]  A. Sherwin,et al.  Benzodiazepine receptor binding is not altered in human epileptogenic cortical foci , 1986, Neurology.

[45]  Neurotransmitters, seizures, and epilepsy III , 1986 .

[46]  M. Dragunow Adenosine: the brain's natural anticonvulsant? , 1986 .

[47]  T. Curran,et al.  Mapping patterns of c-fos expression in the central nervous system after seizure. , 1987, Science.

[48]  M. Dragunow,et al.  Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus , 1987, Nature.

[49]  W. W. Anderson,et al.  The NMDA receptor antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis but not epileptiform bursting in the rat hippocampal slice. , 1987, Journal of neurophysiology.

[50]  M. Avoli,et al.  Seizure-like discharges induced by lowering [Mg2+]0 in the human epileptogenic neocortex maintained in vitro , 1987, Brain Research.

[51]  J. Perlin,et al.  Somatostatin augments the spread of limbic seizures from the hippocampus , 1987, Annals of neurology.

[52]  M. Avoli,et al.  Bursting in human epileptogenic neocortex is depressed by an N-methyl-d-aspartate antagonist , 1987, Neuroscience Letters.

[53]  D. Chadwick,et al.  GABA and amino acid concentrations in lumbar CSF in patients with treated and untreated epilepsy , 1987, Epilepsy Research.

[54]  J. Gotman,et al.  Excitatory amino acids are elevated in human epileptic cerebral cortex , 1988, Neurology.

[55]  D. Chadwick,et al.  CSF gradients for amino acid neurotransmitters. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[56]  S. Kish,et al.  Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[57]  Alan A. Wilson,et al.  Mu‐opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy , 1988, Annals of neurology.

[58]  J. Cavazos,et al.  Synaptic reorganization in the hippocampus induced by abnormal functional activity. , 1988, Science.

[59]  A. Wyler,et al.  Levels of Catechols in Epileptogenic and Nonepileptogenic Regions of the Human Brain , 1988, Journal of neurochemistry.

[60]  M. Avoli,et al.  Endogenous adenosine can reduce epileptiform activity in the human epileptogenic cortex maintained in vitro , 1989, Neuroscience Letters.

[61]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[62]  J. Pretorius,et al.  Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  C. Gall,et al.  Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. , 1989, Science.

[64]  G. Cascino,et al.  Mossy fiber synaptic reorganization in the epileptic human temporal lobe , 1989, Annals of neurology.

[65]  J. H. Kim,et al.  Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy , 1989, Brain Research.

[66]  M. Mesulam,et al.  Alterations of hippocampal acetylcholinesterase in human temporal lobe epilepsy , 1989, Annals of neurology.

[67]  M. Johnston,et al.  Effect of glycine and glycine receptor antagonists on NMDA-induced brain injury , 1989, Neuroscience Letters.

[68]  J. Girvin,et al.  A Study of Monoamine Metabolism in Human Epilepsy , 1989, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[69]  Y. Ben-Ari,et al.  Hippocampal plasticity in childhood epilepsy , 1989, Neuroscience Letters.

[70]  B. Berger,et al.  Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine‐beta‐hydroxylase , 1989, The Journal of comparative neurology.

[71]  P. Kellaway,et al.  Anterior Temporal Lobectomy and Medically Refractory Temporal Lobe Epilepsy of Childhood , 1990, Epilepsia.

[72]  R. Faull,et al.  Induction of c-fos mRNA and protein in neurons and glia after traumatic brain injury: Pharmacological characterization , 1990, Experimental Neurology.

[73]  R. Faull,et al.  Immediate-early genes, kindling and long-term potentiation , 1989, Neuroscience & Biobehavioral Reviews.

[74]  R. Grossman,et al.  Tyrosine hydroxylase—immunoreactive neurons in the temporal lobe in complex partial seizures , 1990, Annals of neurology.

[75]  M. Dragunow Adenosine receptor antagonism accounts for the seizure-prolonging effects of aminophylline , 1990, Pharmacology Biochemistry and Behavior.

[76]  C. Cotman,et al.  Altered distribution of excitatory amino acid receptors in temporal lobe epilepsy , 1990, Experimental Neurology.

[77]  A. Delgado-Escueta,et al.  Synaptosomal ATPase acttivities in temporal cortex and hippocampal formation of humans with focal epilepsy , 1990, Brain Research.

[78]  A. Wyler,et al.  Quinolinic Acid Concentrations in Brain and Cerebrospinal Fluid of Patients with Intractable Complex Partial Seizures , 1990, Epilepsia.

[79]  G. Blomqvist,et al.  Cortical Benzodiazepine Receptor Binding in Patients with Generalized and Partial Epilepsy , 1990, Epilepsia.

[80]  CR Houser,et al.  Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  M. Iadarola,et al.  Alterations in cholecystokinin peptide and mRNA in actively epileptic human temporal cortical foci , 1991, Epilepsy Research.

[82]  S. Spencer,et al.  Interictal Spikes and Hippocampal Somatostatin Levels in Temporal Lobe Epilepsy , 1991, Epilepsia.

[83]  Z. Bortolotto,et al.  Long‐Term Effects of Pilocarpine in Rats: Structural Damage of the Brain Triggers Kindling and Spontaneous I Recurrent Seizures , 1991, Epilepsia.

[84]  T. Babb,et al.  Synaptic reorganization by mossy fibers in human epileptic fascia dentata , 1991, Neuroscience.

[85]  M. Lévesque,et al.  Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices , 1991, Neuroscience Letters.

[86]  R. S. Sloviter,et al.  Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy , 1991, Hippocampus.

[87]  J. Nadler,et al.  Increased AMPA-sensitive quisqualate receptor binding and reduced NMDA receptor binding in epileptic human hippocampus , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  S Gilman,et al.  Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy , 1991, Annals of neurology.

[89]  G. Golarai,et al.  Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  F. Morrell The role of secondary epileptogenesis in human epilepsy. , 1991, Archives of neurology.

[91]  N. Barbaro,et al.  Calcium‐binding protein (calbindin‐D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus , 1991, The Journal of comparative neurology.

[92]  C. Gall,et al.  Kainic acid-induced seizures stimulate increased expression of nerve growth factor mRNA in rat hippocampus. , 1991, Brain research. Molecular brain research.

[93]  R. S. Sloviter Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats , 1992, Neuroscience Letters.

[94]  Atypical pyramidal cells in epileptic human cortex: CFLS and 3-D reconstructions. , 1992, Neuroreport.

[95]  J. E. Franck,et al.  Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. , 1992, Journal of neurosurgery.

[96]  Peter Herscovitch,et al.  PET imaging of opiate receptor binding in human epilepsy using [18F]cyclofoxy , 1992, Epilepsy Research.

[97]  D. Lowenstein,et al.  Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  Covariation of free amino acids in human epileptogenic cortex , 1992, Neurochemistry International.

[99]  U. Ungerstedt,et al.  Intracerebral Microdialysis of Extracellular Amino Acids in the Human Epileptic Focus , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[100]  U. Ungerstedt,et al.  Seizure related elevations of extracellular amino acids in human focal epilepsy , 1992, Neuroscience Letters.

[101]  D. L. Martin,et al.  Synthesis and release of neuroactive substances by glial cells , 1992, Glia.

[102]  House Cr,et al.  Morphological changes in the dentate gyrus in human temporal lobe epilepsy. , 1992 .

[103]  O. Lindvall,et al.  Widespread increase of nerve growth factor protein in the rat forebrain after kindling-induced seizures , 1992, Brain Research.

[104]  K. Bernardo,et al.  Results of anterior temporal lobectomy that spares the amygdala in patients with complex partial seizures. , 1992, Journal of neurosurgery.

[105]  D. Spencer,et al.  “Central” and “peripheral” benzodiazepine receptors , 1992, Neurology.

[106]  M. During,et al.  Adenosine: A potential mediator of seizure arrest and postictal refractoriness , 1992, Annals of neurology.

[107]  M. Dragunow,et al.  Induction of immediate-early gene proteins in dentate granule cells and somatostatin interneurons after hippocampal seizures. , 1992, Brain research. Molecular brain research.

[108]  M. Baudry,et al.  Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid , 1992, Neuroscience.

[109]  S. Lee,et al.  Early seizures after mild closed head injury. , 1992, Journal of neurosurgery.

[110]  M. During,et al.  Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain , 1993, The Lancet.

[111]  W T Blume,et al.  Amygdaloid sclerosis in temporal lobe epilepsy , 1993, Annals of neurology.

[112]  M. Avoli,et al.  Upregulation of A1 adenosine receptors in human temporal lobe epilepsy: A quantitative autoradiographic study , 1993, Neuroscience Letters.

[113]  E. Lothman,et al.  Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. , 1993, Science.

[114]  C. Ferrarese,et al.  Assessment of reliability and biological significance of glutamate levels in cerebrospinal fluid , 1993, Annals of neurology.

[115]  D D Armstrong,et al.  The Neuropathology of Temporal Lobe Epilepsy , 1993, Journal of neuropathology and experimental neurology.

[116]  E. Lothman,et al.  Epileptogenic Effects of Status Epilepticus , 1993, Epilepsia.

[117]  J. Peeling,et al.  1H Magnetic resonance spectroscopy of extracts of human epileptic neocortex and hippocampus , 1993, Neurology.

[118]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy , 1993, Epilepsy Research.

[119]  P. Gass,et al.  Immediate Early Gene Expression in Experimental Epilepsy , 1993, Brain pathology.

[120]  I Savic,et al.  Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. , 1993, Journal of neurology, neurosurgery, and psychiatry.

[121]  P. Gloor,et al.  Atrophy of mesial structures in patients with temporal lobe epilepsy: Cause or consequence of repeated seizures? , 1993, Annals of neurology.

[122]  D E Kuhl,et al.  In vivo cerebral metabolism and central benzodiazepine‐receptor binding in temporal lobe epilepsy , 1993, Neurology.

[123]  S. Uematsu,et al.  Decreased hippocampal muscarinic cholinergic receptor binding measured by 123I‐iododexetimide and single‐photon emission computed tomography in epilepsy , 1993, Annals of neurology.

[124]  T. Babb,et al.  Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy [published erratum appears in J Neurosci 1993 Jun;13(6):following table of contents] , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  O. Lindvall,et al.  Regulation of neurotrophin and traka, trkb and trkc tyrosine kinase receptor messenger RNA expression in kindling , 1993, Neuroscience.

[126]  P. Gluckman,et al.  Is c-Jun involved in nerve cell death following status epilepticus and hypoxic-ischaemic brain injury? , 1993, Brain Research. Molecular Brain Research.

[127]  J. Palacios,et al.  Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study. , 1994, Brain Research. Molecular Brain Research.

[128]  M. Subhash,et al.  Sodium valproate induced alterations in monoamine levels in different regions of the rat brain , 1994, Neurochemistry International.

[129]  R. Grossman,et al.  Glial Cell Nuclear Hypertrophy in Complex Partial Seizures , 1994, Journal of neuropathology and experimental neurology.

[130]  R. S. Sloviter,et al.  The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy , 1994, Annals of neurology.

[131]  T. Babb,et al.  Children with severe epilepsy: evidence of hippocampal neuron losses and aberrant mossy fiber sprouting during postnatal granule cell migration and differentiation. , 1994, Brain research. Developmental brain research.

[132]  R. Kauppinen,et al.  Reduced N-acetylaspartate concentration in temporal lobe epilepsy by quantitative 1H MRS in vivo. , 1994, Neuroreport.

[133]  I. Fried,et al.  Direct Measurement of Extracellular Lactate in the Human Hippocampus During Spontaneous Seizures , 1994, Journal of neurochemistry.

[134]  K. Yoshii,et al.  Phenytoin, an antiepileptic drug, competitively blocked non-NMDA receptors produced by Xenopus oocytes , 1994, Neuroscience Letters.

[135]  J. Cavazos,et al.  Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[136]  M. Dragunow,et al.  Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms , 1994, Neuroscience.

[137]  C. Wasterlain,et al.  Selective protection of neuropeptide containing dentate hilar interneurons by non-NMDA receptor blockade in an animal model of status epilepticus , 1994, Brain Research.

[138]  S. Kish,et al.  Activity of S-adenosylmethionine decarboxylase, a key regulatory enzyme in polyamine biosynthesis, is increased in epileptogenic human cortex. , 1994, Archives of neurology.

[139]  L. Ang,et al.  Increase in enkephalin-like immunoreactivity in hippocampi of adults with generalized epilepsy , 1994, Brain Research.