Robust Functional ANOVA with Application to Additive Manufacturing

The development of data acquisition systems is facilitating the collection of data that are apt to be modelled as functional data. In some applications, the interest lies in the identification of significant differences in group functional means defined by varying experimental conditions, which is known as functional analysis of variance (FANOVA). With real data, it is common that the sample under study is contaminated by some outliers, which can strongly bias the analysis. In this paper, we propose a new robust nonparametric functional ANOVA method (RoFANOVA) that reduces the weights of outlying functional data on the results of the analysis. It is implemented through a permutation test based on a test statistic obtained via a functional extension of the classical robust M -estimator. By means of an extensive Monte Carlo simulation study, the proposed test is compared with some alternatives already presented in the literature, in both one-way and two-way designs. The performance of the RoFANOVA is demonstrated in the framework of a motivating real-case study in the field of additive manufacturing that deals with the analysis of spatter ejections. The RoFANOVA method is implemented in the R package rofanova, available online at https://github.com/unina-sfere/rofanova.

[1]  Simone Vantini,et al.  Functional Regression Control Chart , 2020, Technometrics.

[2]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[3]  Massimo Pacella,et al.  From Profile to Surface Monitoring: SPC for Cylindrical Surfaces Via Gaussian Processes , 2014 .

[4]  Abdelhak. Zoglat,et al.  Analysis of variance for functional data. , 1994 .

[5]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[6]  Fugee Tsung,et al.  Using Profile Monitoring Techniques for a Data‐rich Environment with Huge Sample Size , 2005 .

[7]  J. Ramsay,et al.  Introduction to Functional Data Analysis , 2007 .

[8]  J. Faraway Regression analysis for a functional response , 1997 .

[9]  Bianca Maria Colosimo,et al.  On-Machine Measurement, Monitoring and Control , 2020 .

[10]  Ricardo Fraiman,et al.  On depth measures and dual statistics. A methodology for dealing with general data , 2009, J. Multivar. Anal..

[11]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[12]  P. Good,et al.  Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses , 1995 .

[13]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[14]  Juan Romo,et al.  A half-region depth for functional data , 2011, Comput. Stat. Data Anal..

[15]  B. Colosimo,et al.  Complex geometries in additive manufacturing: A new solution for lattice structure modeling and monitoring , 2021, Journal of Quality Technology.

[16]  Fugee Tsung,et al.  A phase I multi-modelling approach for profile monitoring of signal data , 2017, Int. J. Prod. Res..

[17]  Alexander M. Rubenchik,et al.  Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing , 2017, Scientific Reports.

[18]  B. Colosimo,et al.  In-situ measurement and monitoring methods for metal powder bed fusion: an updated review , 2021, Measurement Science and Technology.

[19]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[20]  Chong Gu Smoothing Spline Anova Models , 2002 .

[21]  T. Özel,et al.  Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625 , 2020 .

[22]  J. A. Cuesta-Albertos,et al.  A simple multiway ANOVA for functional data , 2010 .

[23]  Jaime A. Camelio,et al.  A Review and Perspective on Control Charting with Image Data , 2011 .

[24]  Bryan F. J. Manly,et al.  ANALYSIS OF VARIANCE BY RANDOMIZATION WITH SMALL DATA SETS , 1998 .

[25]  Julian J. Faraway,et al.  An F test for linear models with functional responses , 2004 .

[26]  Alicia Nieto-Reyes,et al.  The random Tukey depth , 2007, Comput. Stat. Data Anal..

[27]  Jin-Ting Zhang,et al.  STATISTICAL INFERENCES FOR LINEAR MODELS WITH FUNCTIONAL RESPONSES , 2011 .

[28]  Manuel Febrero-Bande,et al.  Statistical Computing in Functional Data Analysis: The R Package fda.usc , 2012 .

[29]  Biagio Palumbo,et al.  Functional clustering methods for resistance spot welding process data in the automotive industry , 2020, Applied Stochastic Models in Business and Industry.

[30]  Alessia Pini,et al.  Domain‐selective functional analysis of variance for supervised statistical profile monitoring of signal data , 2018 .

[31]  B. Manly Randomization, Bootstrap and Monte Carlo Methods in Biology , 2018 .

[32]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[33]  Massimo Pacella,et al.  A comparison study of control charts for statistical monitoring of functional data , 2010 .

[34]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[35]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[36]  Jaime A. Camelio,et al.  Statistical process monitoring approach for high-density point clouds , 2012, Journal of Intelligent Manufacturing.

[37]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[38]  S. Van Aelst,et al.  M-estimators of location for functional data , 2018, Bernoulli.

[39]  H. Büning,et al.  Robust analysis of variance , 1997 .

[40]  Peihua Qiu,et al.  Nonparametric Profile Monitoring by Mixed Effects Modeling , 2010, Technometrics.

[41]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[42]  Peter Beike,et al.  Beyond Anova Basics Of Applied Statistics , 2016 .

[43]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[44]  L. Salmaso,et al.  Permutation tests for complex data : theory, applications and software , 2010 .

[45]  T. Hettmansperger,et al.  Robust analysis of variance based upon a likelihood ratio criterion , 1980 .

[46]  Massimo Pacella,et al.  Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis , 2013 .

[47]  Tomasz Górecki,et al.  A comparison of tests for the one-way ANOVA problem for functional data , 2015, Comput. Stat..

[48]  Alessia Pini,et al.  Interval-wise testing for functional data , 2017 .

[49]  Marti J. Anderson,et al.  Permutation tests for univariate or multivariate analysis of variance and regression , 2001 .

[50]  Peihua Qiu,et al.  Phase II monitoring of free-form surfaces: An application to 3D printing , 2018, Journal of Quality Technology.

[51]  T. K. Kundra,et al.  Additive Manufacturing Technologies , 2018 .

[52]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[53]  Quang-Cuong Pham,et al.  Study of the spatter distribution on the powder bed during selective laser melting , 2018, Additive Manufacturing.

[54]  Bianca Maria Colosimo,et al.  On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion , 2017 .

[55]  Wensheng Guo Inference in smoothing spline analysis of variance , 2002 .

[56]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[57]  Juan Antonio Cuesta-Albertos,et al.  Impartial trimmed means for functional data , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[58]  Luigi Salmaso,et al.  New insights on permutation approach for hypothesis testing on functional data , 2014, Adv. Data Anal. Classif..

[59]  R. M. Ward,et al.  Fluid and particle dynamics in laser powder bed fusion , 2018 .

[60]  Qiang Huang,et al.  Opportunities and challenges of quality engineering for additive manufacturing , 2018, Journal of Quality Technology.

[61]  Ricardo Fraiman,et al.  An anova test for functional data , 2004, Comput. Stat. Data Anal..

[62]  Jin-Ting Zhang,et al.  One‐Way anova for Functional Data via Globalizing the Pointwise F‐test , 2014 .

[63]  R. Fraiman,et al.  Trimmed means for functional data , 2001 .

[64]  Rassoul Noorossana,et al.  Statistical Analysis of Profile Monitoring , 2011 .

[65]  Alessandra Menafoglio,et al.  SUPP MATERIAL: Profile Monitoring of Probability Density Functions via Simplicial Functional PCA With Application to Image Data , 2018 .

[66]  S. Jack Hu,et al.  Profile Monitoring and Fault Diagnosis Via Sensor Fusion for Ultrasonic Welding , 2016, Journal of Manufacturing Science and Engineering.

[67]  Stefan Van Aelst,et al.  Robust functional regression based on principal components , 2018, J. Multivar. Anal..

[68]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[69]  Richard Leach,et al.  Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing , 2016 .

[70]  N. Parab,et al.  Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process , 2020, Additive Manufacturing.

[71]  Simone Vantini,et al.  Functional regression control chart for monitoring ship CO 2$_{2}$ emissions , 2021, Qual. Reliab. Eng. Int..

[72]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[73]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[74]  Jun Ni,et al.  Spatter formation in selective laser melting process using multi-laser technology , 2017 .

[75]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[76]  Massimo Pacella,et al.  Profile monitoring via sensor fusion: the use of PCA methods for multi-channel data , 2014 .