Value-Suppressing Uncertainty Palettes

Understanding uncertainty is critical for many analytical tasks. One common approach is to encode data values and uncertainty values independently, using two visual variables. These resulting bivariate maps can be difficult to interpret, and interference between visual channels can reduce the discriminability of marks. To address this issue, we contribute Value-Suppressing Uncertainty Palettes (VSUPs). VSUPs allocate larger ranges of a visual channel to data when uncertainty is low, and smaller ranges when uncertainty is high. This non-uniform budgeting of the visual channels makes more economical use of the limited visual encoding space when uncertainty is low, and encourages more cautious decision-making when uncertainty is high. We demonstrate several examples of VSUPs, and present a crowdsourced evaluation showing that, compared to traditional bivariate maps, VSUPs encourage people to more heavily weight uncertainty information in decision-making tasks.

[1]  David J. Duke,et al.  Uncertainty visualization: why might it fail? , 2009, CHI Extended Abstracts.

[2]  Michael W. Dobson,et al.  Choropleth Maps Without Class Intervals?: A Comment , 2010 .

[3]  Mark Gahegan,et al.  Visual Semiotics & Uncertainty Visualization: An Empirical Study , 2012, IEEE Transactions on Visualization and Computer Graphics.

[4]  Michael Gleicher,et al.  Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Orit Shaer,et al.  Designing for Uncertainty in HCI: When Does Uncertainty Help? , 2017, CHI Extended Abstracts.

[6]  Colin Ware,et al.  Quantitative Texton Sequences for Legible Bivariate Maps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  Bolin Ding,et al.  Trust, but Verify: Optimistic Visualizations of Approximate Queries for Exploring Big Data , 2017, CHI.

[8]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[9]  Vidya Setlur,et al.  An Engineering Model for Color Difference as a Function of Size , 2014, CIC.

[10]  W. R. Garner,et al.  Integrality of stimulus dimensions in various types of information processing , 1970 .

[11]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[12]  B. E. Trumbo,et al.  A Theory for Coloring Bivariate Statistical Maps , 1981 .

[13]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[14]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[15]  H. Wainer,et al.  An Empirical Inquiry concerning Human Understanding of Two-Variable Color Maps , 1980 .

[16]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[17]  Sarah H. Creem-Regehr,et al.  Evaluating the Impact of Binning 2D Scalar Fields , 2017, IEEE Transactions on Visualization and Computer Graphics.

[18]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[19]  Philip K. Robertson,et al.  The Generation of Color Sequences for Univariate and Bivariate Mapping , 1986, IEEE Computer Graphics and Applications.

[20]  Yeqing Bao,et al.  Exploring the Concept and Measurement of General Risk Aversion , 2005 .

[21]  Jeffrey Heer,et al.  Surprise! Bayesian Weighting for De-Biasing Thematic Maps , 2017, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[23]  Norm Goldstein,et al.  The Associated Press Stylebook and Libel Manual. Fully Updated and Revised. , 1998 .

[24]  L. Mlodinow The Drunkard's walk : how randomness rules our lives , 2009 .

[25]  A. Tversky,et al.  The framing of decisions and the psychology of choice. , 1981, Science.

[26]  Norm Goldstein The Associated Press Stylebook and Libel Manual. Fully Revised and Updated. , 1994 .

[27]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[28]  Mark Blyth,et al.  The Black Swan of Cairo How Suppressing Volatility Makes the World Less Predictable and More Dangerous Nassim , 2011 .

[29]  P. Resnick,et al.  Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering , 2015, PloS one.

[30]  David Borland,et al.  Rainbow Color Map (Still) Considered Harmful , 2007 .

[31]  Michael Gleicher,et al.  LayerCake: a tool for the visual comparison of viral deep sequencing data , 2015, Bioinform..

[32]  Lydia R. Lucchesi,et al.  Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation , 2017 .

[33]  Tobias Isenberg,et al.  Evaluating Sketchiness as a Visual Variable for the Depiction of Qualitative Uncertainty , 2012, IEEE Transactions on Visualization and Computer Graphics.

[34]  Heidrun Schumann,et al.  The Visualization of Uncertain Data: Methods and Problems , 2006, SimVis.

[35]  Maria Riveiro,et al.  Evaluation of uncertainty visualization techniques for information fusion , 2007, 2007 10th International Conference on Information Fusion.

[36]  Michael Gleicher,et al.  Visualizing virus population variability from next generation sequencing data , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[37]  Donald H. House,et al.  Visualizing Uncertainty in Predicted Hurricane Tracks , 2013 .

[38]  Daniel A. Keim,et al.  A survey and task-based quality assessment of static 2D colormaps , 2015, Electronic Imaging.

[39]  Ken Brodlie,et al.  A Review of Uncertainty in Data Visualization , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[40]  Hengl Tomislav,et al.  Maps are Not What They Seem: Representing Uncertainty in Soil-property Maps , 2006 .

[41]  L. Hardy,et al.  Tests for the Detection and Analysis of Color-Blindness. I. The Ishihara Test: An Evaluation , 1945 .

[42]  Richard Dunn,et al.  A Dynamic Approach to Two-Variable Color Mapping , 1989 .

[43]  Bernice E. Rogowitz,et al.  How not to lie with visualization , 1996 .

[44]  Robert E Roth,et al.  Value-by-alpha Maps: An Alternative Technique to the Cartogram , 2010, The Cartographic journal.

[45]  Mark Gahegan,et al.  A typology for visualizing uncertainty , 2005, IS&T/SPIE Electronic Imaging.

[46]  Albrecht Schmidt,et al.  Decision-Making under Uncertainty: How the Amount of Presented Uncertainty Influences User Behavior , 2016, NordiCHI.

[47]  Michael W. Dobson,et al.  PERCEPTION OF CONTINUOUSLY SHADED MAPS , 1980 .

[48]  Bernice E. Rogowitz,et al.  The "Which Blair project": a quick visual method for evaluating perceptual color maps , 2001, Proceedings Visualization, 2001. VIS '01..

[49]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .