Automating the Formulation and Resolution of Convex Variational Problems

Convex variational problems arise in many fields ranging from image processing to fluid and solid mechanics communities. Interesting applications usually involve non-smooth terms, which require well-designed optimization algorithms for their resolution. The present manuscript presents the Python package called fenics_optim built on top of the FEniCS finite element software, which enables one to automate the formulation and resolution of various convex variational problems. Formulating such a problem relies on FEniCS domain-specific language and the representation of convex functions, in particular, non-smooth ones, in the conic programming framework. The discrete formulation of the corresponding optimization problems hinges on the finite element discretization capabilities offered by FEniCS, while their numerical resolution is carried out by the interior-point solver Mosek. Through various illustrative examples, we show that convex optimization problems can be formulated using only a few lines of code, discretized in a very simple manner, and solved extremely efficiently.

[1]  Antonin Chambolle,et al.  Crouzeix–Raviart Approximation of the Total Variation on Simplicial Meshes , 2020, Journal of Mathematical Imaging and Vision.

[2]  J. Bleyer,et al.  On the performance of non‐conforming finite elements for the upper bound limit analysis of plates , 2013 .

[3]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[4]  Neil J. Balmforth,et al.  Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics , 2014 .

[5]  Xu Guo,et al.  A mixed integer programming for robust truss topology optimization with stress constraints , 2010 .

[6]  Yoshihiro Kanno,et al.  Global optimization of robust truss topology via mixed integer semidefinite programming , 2010 .

[7]  Lisa Turner,et al.  Applications of Second Order Cone Programming , 2012 .

[8]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[9]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[10]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[11]  Anders Logg,et al.  DOLFIN: a C++/Python Finite Element Library , 2012 .

[12]  Robert Chares Cones and interior-point algorithms for structured convex optimization involving powers andexponentials , 2009 .

[13]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[14]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[15]  G. Carlier,et al.  A Γ-Convergence Result for the Upper Bound Limit Analysis of Plates , 2014, 1410.0326.

[16]  Philippe Coussot,et al.  Efficient numerical computations of yield stress fluid flows using second-order cone programming , 2015 .

[17]  G. Carlier,et al.  A PROJECTION APPROACH TO THE NUMERICAL ANALYSIS OF LIMIT LOAD PROBLEMS , 2011 .

[18]  Problemes variationnels en plasticite parfaite des plaques , 1983 .

[19]  Serge Dumont,et al.  On a dual formulation for the growing sandpile problem , 2009, European Journal of Applied Mathematics.

[20]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[21]  C. Villani Topics in Optimal Transportation , 2003 .

[22]  P. Coussot,et al.  Bingham’s heritage , 2017, Rheologica Acta.

[23]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[24]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[25]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[26]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[27]  Martin Sandve Alnæs,et al.  UFL: a finite element form language , 2012 .

[28]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[29]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[30]  Yoshihiro Kanno,et al.  Nonsmooth Mechanics and Convex Optimization , 2011 .

[31]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[32]  G. Carlier,et al.  APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION , 2009 .

[33]  G. Strang A minimax problem in plasticity theory , 1979 .

[34]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[35]  Anders Logg,et al.  A compiler for variational forms , 2006, TOMS.

[36]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[37]  Antonio Capsoni,et al.  Limit analysis of plates-a finite element formulation , 1999 .

[38]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[39]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[40]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[41]  Anders Logg,et al.  FFC: the FEniCS Form Compiler , 2012 .

[42]  J. Bleyer Advances in the simulation of viscoplastic fluid flows using interior-point methods , 2018 .

[43]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[44]  Leonid Prigozhin,et al.  Variational model of sandpile growth , 1996, European Journal of Applied Mathematics.

[45]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .