A circuit method to integrate metamaterial and graphene in absorber design

We theoretically investigate a circuit analog approach to integrate graphene and metamaterial in electromagnetic wave absorber design. In multilayer graphene-metamaterial (GM) absorbers, ultrathin metamaterial elements are theoretically modeled as equivalent loads which attached to the junctions between two transmission lines. Combining with the benefits of tunable chemical potential in graphene, an optimized GM absorber is proposed as a proof of the circuit method. Numerical simulation results demonstrate the effectiveness of the circuit analytical model. The operating frequency of the GM absorber can be varied in terahertz frequency, indicating the potential applications of the GM absorber in sensors, modulators, and filters.

[1]  Lixin Ran,et al.  MAGNETIC PROPERTIES OF S-SHAPED SPLIT-RING RESONATORS , 2005 .

[2]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[3]  Su Xu,et al.  Experimental Measurement Method to Determine the Permittivity of Extra Thin Materials Using Resonant Metamaterials , 2011 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  P. Bøggild,et al.  Graphene conductance uniformity mapping. , 2012, Nano letters.

[6]  Qun Wu,et al.  Dual-Band Terahertz Metamaterial Absorber with Polarization Insensitivity and Wide Incident Angle , 2011 .

[7]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[8]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[9]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[10]  Philippe Tassin,et al.  Effective material parameter retrieval for thin sheets: Theory and application to graphene, thin silver films, and single-layer metamaterials , 2012, 1209.5877.

[11]  George W. Hanson,et al.  Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide , 2008 .

[12]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[13]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[14]  Xiangxiang Cheng,et al.  Magnetic Properties of Metamaterial Composed of Closed Rings , 2011 .

[15]  A. V. Gelfand,et al.  Matrix Structure of Metamaterial Absorbers for Multispectral Terahertz Imaging , 2012 .

[16]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[17]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[18]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[19]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[20]  Toshihiko Baba Remember the light , 2007 .

[21]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[22]  Masayoshi Tonouchi,et al.  Terahertz and infrared spectroscopy of gated large-area graphene. , 2012, Nano letters.

[23]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[24]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[25]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[26]  Tian Jiang,et al.  Polarization Insensitive Metamaterial Absorber with Wide Incident Angle , 2010 .

[27]  F. Lederer,et al.  A perfect absorber made of a graphene micro-ribbon metamaterial. , 2012, Optics express.

[28]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[29]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[30]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[31]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[32]  Hongsheng Chen,et al.  MULTI-BAND AND POLARIZATION INSENSITIVE METAMATERIAL ABSORBER , 2011 .

[33]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[34]  A. Lavrinenko,et al.  Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. , 2013, Optics express.

[35]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[36]  Sergei A. Tretyakov,et al.  Thin absorbing structure for all incidence angles based on the use of a high‐impedance surface , 2003 .

[37]  B. A. Munk,et al.  On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence , 2007, IEEE Transactions on Antennas and Propagation.

[38]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[39]  Helin Yang,et al.  Perfect Metamaterial Absorber with Dual Bands , 2010 .

[40]  G. Hanson,et al.  Dyadic Green's Functions for an Anisotropic, Non-Local Model of Biased Graphene , 2008, IEEE Transactions on Antennas and Propagation.

[41]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.