Using deep learning to probe the neural code for images in primary visual cortex

Primary visual cortex (V1) is the first stage of cortical image processing, and major effort in systems neuroscience is devoted to understanding how it encodes information about visual stimuli. Within V1, many neurons respond selectively to edges of a given preferred orientation: These are known as either simple or complex cells. Other neurons respond to localized center–surround image features. Still others respond selectively to certain image stimuli, but the specific features that excite them are unknown. Moreover, even for the simple and complex cells—the best-understood V1 neurons—it is challenging to predict how they will respond to natural image stimuli. Thus, there are important gaps in our understanding of how V1 encodes images. To fill this gap, we trained deep convolutional neural networks to predict the firing rates of V1 neurons in response to natural image stimuli, and we find that the predicted firing rates are highly correlated (\begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{\overline {{\bf{CC}}} _{{\bf{norm}}}}\end{document} = 0.556 ± 0.01) with the neurons' actual firing rates over a population of 355 neurons. This performance value is quoted for all neurons, with no selection filter. Performance is better for more active neurons: When evaluated only on neurons with mean firing rates above 5 Hz, our predictors achieve correlations of \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{\overline {{\bf{CC}}} _{{\bf{norm}}}}\end{document} = 0.69 ± 0.01 with the neurons' true firing rates. We find that the firing rates of both orientation-selective and non-orientation-selective neurons can be predicted with high accuracy. Additionally, we use a variety of models to benchmark performance and find that our convolutional neural-network model makes more accurate predictions.

[1]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[2]  R. Desimone,et al.  Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[4]  Brian Lau,et al.  Computational subunits of visual cortical neurons revealed by artificial neural networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[6]  Ryan J. Prenger,et al.  Nonlinear V1 responses to natural scenes revealed by neural network analysis , 2004, Neural Networks.

[7]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[8]  Ryan J. Prenger,et al.  The Berkeley Wavelet Transform: A Biologically Inspired Orthogonal Wavelet Transform , 2008, Neural Computation.

[9]  B. Willmore,et al.  Neural Representation of Natural Images in Visual Area V2 , 2010, The Journal of Neuroscience.

[10]  Michael Robert DeWeese,et al.  A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields , 2011, PLoS Comput. Biol..

[11]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[12]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[13]  Michael Robert DeWeese,et al.  Sparse Coding Models Can Exhibit Decreasing Sparseness while Learning Sparse Codes for Natural Images , 2013, PLoS Comput. Biol..

[14]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[15]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[16]  Mark Mazurek,et al.  Robust quantification of orientation selectivity and direction selectivity , 2014, Front. Neural Circuits.

[17]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  O. Schwartz,et al.  Flexible Gating of Contextual Influences in Natural Vision , 2015, Nature Neuroscience.

[19]  Robert H. Cormack,et al.  Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts. , 2015, Optics letters.

[20]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[21]  Eero P. Simoncelli,et al.  A Convolutional Subunit Model for Neuronal Responses in Macaque V1 , 2015, The Journal of Neuroscience.

[22]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[23]  Cyriel M A Pennartz,et al.  Population-Level Neural Codes Are Robust to Single-Neuron Variability from a Multidimensional Coding Perspective. , 2016, Cell reports.

[24]  Surya Ganguli,et al.  Deep Learning Models of the Retinal Response to Natural Scenes , 2017, NIPS.

[25]  Eero P. Simoncelli,et al.  Selectivity and tolerance for visual texture in macaque V2 , 2016, Proceedings of the National Academy of Sciences.

[26]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[27]  Andrew J. King,et al.  Measuring the Performance of Neural Models , 2016, Front. Comput. Neurosci..

[28]  Leon A. Gatys,et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images , 2019, PLoS Comput. Biol..