Surface code error correction on a defective lattice

The yield of physical qubits fabricated in the laboratory is much lower than that of classical transistors in production semiconductor fabrication. Actual implementations of quantum computers will be susceptible to loss in the form of physically faulty qubits. Though these physical faults must negatively affect the computation, we can deal with them by adapting error correction schemes. In this paper We have simulated statically placed single-fault lattices and lattices with randomly placed faults at functional qubit yields of 80%, 90% and 95%, showing practical performance of a defective surface code by employing actual circuit constructions and realistic errors on every gate, including identity gates. We extend Stace et al.'s superplaquettes solution against dynamic losses for the surface code to handle static losses such as physically faulty qubits. The single-fault analysis shows that a static loss at the periphery of the lattice has less negative effect than a static loss at the center. The randomly-faulty analysis shows that 95% yield is good enough to build a large scale quantum computer. The local gate error rate threshold is $\sim 0.3\%$, and a code distance of seven suppresses the residual error rate below the original error rate at $p=0.1\%$. 90% yield is also good enough when we discard badly fabricated quantum computation chips, while 80% yield does not show enough error suppression even when discarding 90% of the chips. We evaluated several metrics for predicting chip performance, and found that the average of the product of the number of data qubits and the cycle time of a stabilizer measurement of stabilizers gave the strongest correlation with post-correction residual error rates. Our analysis will help with selecting usable quantum computation chips from among the pool of all fabricated chips.

[1]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[2]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[3]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[4]  Yoichi Shinoda,et al.  StarBED and SpringOS Architectures and Their Performance , 2011, TRIDENTCOM.

[5]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[6]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[7]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[8]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[9]  Austin G. Fowler,et al.  Topological code Autotune , 2012, 1202.6111.

[10]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[11]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[12]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[13]  Adam D. Smith,et al.  Secure multi-party quantum computation , 2002, STOC '02.

[14]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[15]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[16]  Elham Kashefi,et al.  Measurement-Based and Universal Blind Quantum Computation , 2010, SFM.

[17]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[18]  Austin G. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2008 .

[19]  Sy-Yen Kuo,et al.  Fault-Tolerant Operations for Universal Blind Quantum Computation , 2013, ACM J. Emerg. Technol. Comput. Syst..

[20]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[21]  Austin G. Fowler,et al.  Erratum: High-threshold universal quantum computation on the surface code [Phys. Rev. A 80, 052312 (2009)] , 2013 .

[22]  A. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2007, cond-mat/0702620.

[23]  Harry Buhrman,et al.  Distributed Quantum Computing , 2003, MFCS.

[24]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[25]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[26]  MeterRodney Van,et al.  Fault-Tolerant Operations for Universal Blind Quantum Computation , 2015 .

[27]  John Kubiatowicz,et al.  A fault tolerant, area efficient architecture for Shor's factoring algorithm , 2009, ISCA '09.

[28]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[29]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[30]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[32]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[33]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[34]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[35]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[36]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[37]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[38]  Yoichi Shinoda,et al.  StarBED and SpringOS: large-scale general purpose network testbed and supporting software , 2006, valuetools '06.

[39]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[40]  Yasuhiro Takahashi,et al.  A quantum circuit for shor's factoring algorithm using 2n + 2 qubits , 2006, Quantum Inf. Comput..

[41]  Peter Vojtáš,et al.  Mathematical Foundations of Computer Science 2003 , 2003, Lecture Notes in Computer Science.

[42]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[43]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[44]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[45]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[46]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[47]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[48]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .