The specific DNA barcodes based on chloroplast genes for species identification of Theaceae plants

[1]  Qiulu Chu,et al.  Characterization of the Volatile Compounds in Camellia oleifera Seed Oil from Different Geographic Origins , 2022, Molecules.

[2]  Yufen Xu,et al.  Complete chloroplast genome of a cultivated oil camellia species, Camellia gigantocarpa , 2021, Mitochondrial DNA. Part B, Resources.

[3]  Heng-fu Yin,et al.  The complete chloroplast genome of Camellia fluviatilis (Theaceae), a wild oil-Camellia species , 2021, Mitochondrial DNA Part B.

[4]  Likun Xie,et al.  The complete chloroplast genome of Pseudognaphalium affine (D.Don) Anderb. (Asteraceae) , 2021, Mitochondrial DNA. Part B, Resources.

[5]  Zhi-hai Huang,et al.  DNA barcode reference library construction and genetic diversity and structure analysis of Amomum villosum Lour. (Zingiberaceae) populations in Guangdong Province , 2021, PeerJ.

[6]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[7]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[8]  X. Lin,et al.  The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants , 2021, Scientific Reports.

[9]  P. Besse,et al.  Plant DNA Barcoding Principles and Limits: A Case Study in the Genus Vanilla. , 2021, Methods in molecular biology.

[10]  Ying Xu,et al.  Concerted and birth-and-death evolution of 26S ribosomal DNA in Camellia L. , 2020, Annals of botany.

[11]  M. Amar ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica , 2020, Journal of Genetic Engineering and Biotechnology.

[12]  S. P. Saikia,et al.  DNA barcodes for delineating Clerodendrum species of North East India , 2020, Scientific Reports.

[13]  B. Liao,et al.  Complete chloroplast genome of Salvia plebeia: organization, specific barcode and phylogenetic analysis. , 2020, Chinese journal of natural medicines.

[14]  H. Tong,et al.  Monitoring the authenticity of pu'er tea via chemometric analysis of multielements and stable isotopes. , 2020, Food research international.

[15]  Margaret H. Frank,et al.  TBtools - an integrative toolkit developed for interactive analyses of big biological data. , 2020, Molecular plant.

[16]  Li Xiang,et al.  Comparative analysis of mitogenomes among six species of grasshoppers (Orthoptera: Acridoidea: Catantopidae) and their phylogenetic implications in wing-type evolution. , 2020, International journal of biological macromolecules.

[17]  Xiaolong Zhang,et al.  Climate change‐induced migration patterns and extinction risks of Theaceae species in China , 2020, Ecology and evolution.

[18]  Margaret H. Frank,et al.  TBtools - an integrative toolkit developed for interactive analyses of big biological data. , 2020, Molecular plant.

[19]  M. Chase,et al.  Characterization of sequence variability hotspots in Cranichideae plastomes (Orchidaceae, Orchidoideae) , 2020, PloS one.

[20]  Christopher L. Owen,et al.  Reexamination of Rhopalosiphum (Hemiptera: Aphididae) using linear discriminant analysis to determine the validity of synonymized species, with some new synonymies and distribution data , 2020, Biodiversity data journal.

[21]  Hang Sun,et al.  The complete chloroplast genome of Soroseris umbrella (Asteraceae) , 2020, Mitochondrial DNA. Part B, Resources.

[22]  W. Koch,et al.  Applications of Tea (Camellia sinensis) and Its Active Constituents in Cosmetics , 2019, Molecules.

[23]  H. Duan,et al.  The screening and identification of DNA barcode sequences for Rehmannia , 2019, Scientific Reports.

[24]  J. Suda,et al.  Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. , 2019, The New phytologist.

[25]  H. Koiwa,et al.  Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing , 2019, BMC Plant Biology.

[26]  Wei Li,et al.  Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis , 2019, PloS one.

[27]  T. Marschall,et al.  SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome , 2019, PloS one.

[28]  Jeremy R. deWaard,et al.  Characterization and comparison of poorly known moth communities through DNA barcoding in two Afrotropical environments in Gabon 1. , 2019, Genome.

[29]  R. Henry,et al.  Advances in understanding salt tolerance in rice , 2019, Theoretical and Applied Genetics.

[30]  Ying-Jun Zhang,et al.  Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section Thea. , 2018, Journal of agricultural and food chemistry.

[31]  Gao Chen,et al.  The role of botanical gardens in scientific research, conservation, and citizen science , 2018, Plant diversity.

[32]  D. Presgraves,et al.  Evaluating genomic signatures of “the large X‐effect” during complex speciation , 2018, Molecular ecology.

[33]  Yong-Jie Zhang,et al.  [Adulteration detection of tea samples based on plant rbcL gene sequencing]. , 2018, Sheng wu gong cheng xue bao = Chinese journal of biotechnology.

[34]  C. Cho,et al.  The complete chloroplast genome sequence of the Japanese Camellia (Camellia japonica L.) , 2017, Mitochondrial DNA. Part B, Resources.

[35]  B. Drew,et al.  Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny , 2017, PloS one.

[36]  Mats E. Pettersson,et al.  Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate , 2017, bioRxiv.

[37]  Bhavisha P. Sheth,et al.  DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation. , 2017, Genome.

[38]  A. Chaveerach,et al.  Efficient DNA barcode regions for classifying Piper species (Piperaceae) , 2016, PhytoKeys.

[39]  Yanli Wang,et al.  Suitable DNA Barcoding for Identification and Supervision of Piper kadsura in Chinese Medicine Markets , 2016, Molecules.

[40]  H. Thompson,et al.  Principles of Biomedical Agriculture Applied to the Plant Family Theaceae To Identify Novel Interventions for Cancer Prevention and Control. , 2016, Journal of agricultural and food chemistry.

[41]  Shilin Chen,et al.  Plant DNA barcoding: from gene to genome , 2015, Biological reviews of the Cambridge Philosophical Society.

[42]  Thomas Borsch,et al.  Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice , 2014, PloS one.

[43]  M. Bhargava,et al.  DNA barcoding in plants: evolution and applications of in silico approaches and resources. , 2013, Molecular phylogenetics and evolution.

[44]  B. Hall,et al.  Building phylogenetic trees from molecular data with MEGA. , 2013, Molecular biology and evolution.

[45]  David L. Erickson,et al.  Tropical Plant–Herbivore Networks: Reconstructing Species Interactions Using DNA Barcodes , 2013, PloS one.

[46]  R. Cruickshank,et al.  The seven deadly sins of DNA barcoding , 2012, Molecular ecology resources.

[47]  G. Boxshall,et al.  New Species in the Old World: Europe as a Frontier in Biodiversity Exploration, a Test Bed for 21st Century Taxonomy , 2012, PloS one.

[48]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[49]  M. Ghiassi,et al.  Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques , 2012, PloS one.

[50]  P. Hollingsworth Refining the DNA barcode for land plants , 2011, Proceedings of the National Academy of Sciences.

[51]  Damon P. Little,et al.  Commercial Teas Highlight Plant DNA Barcode Identification Successes and Obstacles , 2011, Scientific reports.

[52]  J. Vogel,et al.  Use of rbcL and trnL-F as a Two-Locus DNA Barcode for Identification of NW-European Ferns: An Ecological Perspective , 2011, PloS one.

[53]  Christopher Baraloto,et al.  Identification of Amazonian Trees with DNA Barcodes , 2009, PloS one.

[54]  E. Choi,et al.  New neolignan component from Camellia amplexicaulis and effects on osteoblast differentiation. , 2009, Chemical & pharmaceutical bulletin.

[55]  Subramanyam Ragupathy,et al.  A botanical renaissance: state-of-the-art DNA bar coding facilitates an Automated Identification Technology system for plants , 2009, Int. J. Comput. Appl. Technol..

[56]  H. Ochoterena,et al.  Phylogenetic relationships of the genera of Theaceae based on morphology , 2004, Cladistics : the international journal of the Willi Hennig Society.

[57]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[58]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  Y. Fu,et al.  Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. , 1997, Genetics.