Defining Predictive Probability Functions for Species Sampling Models.

We review the class of species sampling models (SSM). In particular, we investigate the relation between the exchangeable partition probability function (EPPF) and the predictive probability function (PPF). It is straightforward to define a PPF from an EPPF, but the converse is not necessarily true. In this paper we introduce the notion of putative PPFs and show novel conditions for a putative PPF to define an EPPF. We show that all possible PPFs in a certain class have to define (unnormalized) probabilities for cluster membership that are linear in cluster size. We give a new necessary and sufficient condition for arbitrary putative PPFs to define an EPPF. Finally, we show posterior inference for a large class of SSMs with a PPF that is not linear in cluster size and discuss a numerical method to derive its PPF.

[1]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[2]  T. Ferguson,et al.  A Representation of Independent Increment Processes without Gaussian Components , 1972 .

[3]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[4]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[5]  J. Kingman Random Discrete Distributions , 1975 .

[6]  J. Kingman The Representation of Partition Structures , 1978 .

[7]  D. Berry,et al.  Empirical Bayes Estimation of a Binomial Parameter Via Mixtures of Dirichlet Processes , 1979 .

[8]  C. J-F,et al.  THE COALESCENT , 1980 .

[9]  S. Zabell W. E. Johnson's "Sufficientness" Postulate , 1982 .

[10]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[11]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[12]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[13]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[14]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[15]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[16]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[17]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.

[18]  Eugenio Regazzini,et al.  EXCHANGEABILITY, PREDICTIVE DISTRIBUTIONS AND PARAMETRIC MODELS* , 2000 .

[19]  A. Lijoi,et al.  Distributional results for means of normalized random measures with independent increments , 2003 .

[20]  J. Pitman Poisson-Kingman partitions , 2002, math/0210396.

[21]  Lancelot F. James,et al.  Generalized weighted Chinese restaurant processes for species sampling mixture models , 2003 .

[22]  D. Goldstein Statistics and science : a Festschrift for Terry Speed , 2003 .

[23]  J. Pitman,et al.  Exchangeable Gibbs partitions and Stirling triangles , 2004, math/0412494.

[24]  S. Walker,et al.  Normalized random measures driven by increasing additive processes , 2004, math/0508592.

[25]  T. Ferguson Some Developments of the Blackwell-MacQueen Urn Scheme , 2005 .

[26]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[27]  S. Walker,et al.  On Consistency of Nonparametric Normal Mixtures for Bayesian Density Estimation , 2005 .

[28]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[29]  Ramsés H. Mena,et al.  Bayesian Nonparametric Estimation of the Probability of Discovering New Species , 2007 .

[30]  S. Walker,et al.  Bayesian nonparametric estimators derived from conditional Gibbs structures , 2008, 0808.2863.

[31]  S. Walker,et al.  Investigating nonparametric priors with Gibbs structure , 2008 .

[32]  Lancelot F. James Large sample asymptotics for the two-parameter Poisson–Dirichlet process , 2007, 0708.4294.

[33]  Fernando A. Quintana,et al.  Some issues in nonparametric Bayesian modeling using species sampling models , 2008 .

[34]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[35]  A. Lijoi,et al.  Models Beyond the Dirichlet Process , 2009 .

[36]  "Borrowing Strength with Non-Exchangeable Priors over Subpopulations" We introduce a non-parametric Bayesian model for phase II , 2009 .

[37]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[38]  J. Pitman,et al.  Characterizations of exchangeable partitions and random discrete distributions by deletion properties , 2009, 0909.3642.

[39]  Gun Ho Jang,et al.  POSTERIOR CONSISTENCY OF SPECIES SAMPLING PRIORS , 2010 .

[40]  L. Trippa,et al.  A Class of Normalized Random Measures with an Exact Predictive Sampling Scheme , 2012 .

[41]  P Müller,et al.  Borrowing Strength with Nonexchangeable Priors over Subpopulations , 2012, Biometrics.