Quantum error correction via convex optimization

We show that the problem of designing a quantum information processing error correcting procedure can be cast as a bi-convex optimization problem, iterating between encoding and recovery, each being a semidefinite program. For a given encoding operator the problem is convex in the recovery operator. For a given method of recovery, the problem is convex in the encoding scheme. This allows us to derive new codes that are locally optimal. We present examples of such codes that can handle errors which are too strong for codes derived by analogy to classical error correction techniques.

[1]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[2]  Shinji Hara,et al.  Suboptimal quantum-error-correcting procedure based on semidefinite programming , 2005 .

[3]  Herschel Rabitz,et al.  Optimal Experiment Design for Quantum State and Process Tomography and Hamiltonian Parameter Estimation , 2004 .

[4]  P. Zanardi,et al.  Purity and state fidelity of quantum channels , 2004, quant-ph/0403074.

[5]  Daniel A. Lidar,et al.  Theory of initialization-free decoherence-free subspaces and subsystems (14 pages) , 2005, quant-ph/0505051.

[6]  D. A. Lidar,et al.  Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit , 2006 .

[7]  Moe Z. Win,et al.  Optimum quantum error recovery using semidefinite programming , 2007 .

[9]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Daniel A. Lidar,et al.  Empirical determination of dynamical decoupling operations , 2003 .

[12]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[18]  R. F. Werner,et al.  Comment on "Optimum Quantum Error Recovery using Semidefinite Programming" , 2006 .

[19]  Daniel A Lidar,et al.  Robust quantum error correction via convex optimization. , 2008, Physical review letters.

[20]  R F Werner,et al.  Iterative optimization of quantum error correcting codes. , 2005, Physical review letters.

[21]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .