Magnetocontrollable photonic crystals based on colloidal ferrofluids

We theoretically exploit a class of one-dimensional double-layer photonic crystals based on colloidal ferrofluids, which are made of ferromagnetic nanoparticles suspended in a carrier liquid. Depending on the magnetic-field-induced anisotropic property of the ferrofluid, precise controllability of the band gaps is demonstrated to be possible by applying an appropriate external magnetic field.

[1]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[2]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[3]  Stefan Odenbach,et al.  Magnetoviscous effects in ferrofluids , 2002 .

[4]  K W Yu,et al.  Nonlinear ac response of anisotropic composites. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[6]  Venkatraman Gopalan,et al.  Strain-tunable photonic band gap crystals , 2001 .

[7]  Yadong Yin,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[8]  J. Wan,et al.  Large frequency range of negligible transmission in one-dimensional photonic quantum well structures , 1998 .

[9]  D. Davidov,et al.  Magnetic-field tunable photonic stop band in metallodielectric photonic crystals , 2003 .

[10]  Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation , 2001, cond-mat/0101361.

[11]  M. Straub,et al.  Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing , 2005 .

[12]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[13]  C. Bowden,et al.  Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  M. Straub,et al.  Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals , 2005 .

[15]  Guangzhong Wang,et al.  Electrically tunable photonic crystals with nonlinear composite materials , 2007 .

[16]  Jiping Huang,et al.  Enhanced nonlinear optical responses of materials: Composite effects , 2006 .

[17]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[18]  D. Gaillot,et al.  Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition , 2006 .

[19]  Werner Köhler,et al.  Short-time aggregation dynamics of reversible light-induced cluster formation in ferrofluids , 2005 .

[20]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[21]  N. Dai,et al.  Enhanced visibility of graphene: Effect of one-dimensional photonic crystal , 2007, 0710.2447.

[22]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[23]  Inkyu Park,et al.  Linear and nonlinear optical properties of one-dimensional photonic crystals containing ZnO defects , 2007 .

[24]  Michael Scalora,et al.  Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures , 1997 .

[25]  Jiping Huang,et al.  Second-harmonic generation with magnetic-field controllabilities , 2006 .