Numerical study of pillar stresses and interaction effects for twin rock caverns

Summary Large underground caverns are increasingly being considered for the construction of industrial facilities and transportation infrastructure in order to optimize the use of surface land in large urban cities. Due to the geological constraints underground, it is sometimes necessary to construct a cavern close to an existing cavern. Pillars serve as an underground support element in twin caverns, without which it is difficult to sustain the weight of the overburden materials. If the strength of a pillar is exceeded, it will fail, and the load that it carried will be transferred and thereby contribute to the collapse of the twin caverns. The lack of confinement in slender pillars also contributes to the complete collapse of pillars at relatively low stress magnitudes. From a design point of view, understanding the pillar failure mechanism and the interaction effect between twin caverns is essential. This paper presents a numerical investigation on the influence of various design parameters on twin cavern interaction. Pillar performances with respect to the changes to the maximum principal stress in the pillar, the peak vertical stress, and the peak principal stress difference in the pillar core are studied in order to examine the failure mechanisms and to identify situations in which there is significant cavern interaction and overlap of the plastic zones. Copyright © 2014 John Wiley & Sons, Ltd.