Monte Carlo algorithms for evaluating Sobol' sensitivity indices
暂无分享,去创建一个
[1] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[2] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[3] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[4] Ivan Tomov Dimov,et al. Exact Error Estimates and Optimal Randomized Algorithms for Integration , 2006, Numerical Methods and Applications.
[5] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[6] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[7] Max D. Morris,et al. Factorial sampling plans for preliminary computational experiments , 1991 .
[8] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[9] Leonidas J. Guibas,et al. Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.
[10] Zahari Zlatev,et al. Testing the Sensitivity of Air Pollution Levels to Variations of Some Chemical Rate Constants , 1997, LSSC.
[11] C. Fortuin,et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .
[12] Terje O. Espelid,et al. An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.
[13] A. Saltelli,et al. A quantitative model-independent method for global sensitivity analysis of model output , 1999 .
[14] Alan Genz,et al. Testing multidimensional integration routines , 1984 .
[15] Julien Jacques,et al. Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..
[16] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[17] Stefano Tarantola,et al. Sensitivity analysis of model output: variance-based methods make the difference , 1997, WSC '97.
[18] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[19] Michael D. McKay,et al. Evaluating Prediction Uncertainty , 1995 .
[20] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[21] Ilya M. Sobol,et al. Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..
[22] Rudolf Schürer,et al. Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS , 2004 .
[23] A. Saltelli,et al. Importance measures in global sensitivity analysis of nonlinear models , 1996 .
[24] Emanouil I. Atanassov,et al. Generating and Testing the Modified Halton Sequences , 2002, Numerical Methods and Application.
[25] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .
[26] Zahari Zlatev,et al. Computational and Numerical Challenges in Environmental Modelling , 2006 .
[27] A. Takemura. Tensor Analysis of ANOVA Decomposition , 1983 .
[28] I. Dimov,et al. Error analysis of an adaptive Monte Carlo method for numerical integration , 1998 .