Monte Carlo algorithms for evaluating Sobol' sensitivity indices

Sensitivity analysis is a powerful technique used to determine robustness, reliability and efficiency of a model. The main problem in this procedure is the evaluating total sensitivity indices that measure a parameter's main effect and all the interactions involving that parameter. From a mathematical point of view this problem is presented by a set of multidimensional integrals. In this work a simple adaptive Monte Carlo technique for evaluating Sobol' sensitivity indices is developed. A comparison of accuracy and complexity of plain Monte Carlo and adaptive Monte Carlo algorithms is presented. Numerical experiments for evaluating integrals of different dimensions are performed.

[1]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[2]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[3]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[4]  Ivan Tomov Dimov,et al.  Exact Error Estimates and Optimal Randomized Algorithms for Integration , 2006, Numerical Methods and Applications.

[5]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[6]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[7]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[8]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[9]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[10]  Zahari Zlatev,et al.  Testing the Sensitivity of Air Pollution Levels to Variations of Some Chemical Rate Constants , 1997, LSSC.

[11]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[12]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[13]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[14]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[15]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[16]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[17]  Stefano Tarantola,et al.  Sensitivity analysis of model output: variance-based methods make the difference , 1997, WSC '97.

[18]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[19]  Michael D. McKay,et al.  Evaluating Prediction Uncertainty , 1995 .

[20]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[21]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[22]  Rudolf Schürer,et al.  Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS , 2004 .

[23]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[24]  Emanouil I. Atanassov,et al.  Generating and Testing the Modified Halton Sequences , 2002, Numerical Methods and Application.

[25]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[26]  Zahari Zlatev,et al.  Computational and Numerical Challenges in Environmental Modelling , 2006 .

[27]  A. Takemura Tensor Analysis of ANOVA Decomposition , 1983 .

[28]  I. Dimov,et al.  Error analysis of an adaptive Monte Carlo method for numerical integration , 1998 .