New Sharp Gagliardo–Nirenberg–Sobolev Inequalities and an Improved Borell–Brascamp–Lieb Inequality
暂无分享,去创建一个
[1] S. Zugmeyer. Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains , 2017, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.
[2] K. Allegaert,et al. (Preprint) , 2018 .
[3] A. Figalli. The Monge-ampere Equation and Its Applications , 2017 .
[4] Arnaud Guillin,et al. Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities , 2015, 1507.01086.
[5] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[6] V. H. Nguyen. Sharp weighted Sobolev and Gagliardo–Nirenberg inequalities on half‐spaces via mass transport and consequences , 2013, 1307.1363.
[7] C. Villani. Optimal Transport: Old and New , 2008 .
[8] S. Bobkov,et al. From Brunn–Minkowski to sharp Sobolev inequalities , 2008 .
[9] I. Gentil. From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality , 2007, 0710.5025.
[10] B. Nazaret. Best constant in Sobolev trace inequalities on the half-space , 2006 .
[11] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[12] C. Villani,et al. A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .
[13] I. Gentil. The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations , 2003 .
[14] C. Villani. Topics in Optimal Transportation , 2003 .
[15] Manuel del Pino,et al. The optimal Euclidean Lp-Sobolev logarithmic inequality , 2003 .
[16] Manuel del Pino,et al. Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .
[17] V. V. Buldygin,et al. Brunn-Minkowski inequality , 2000 .
[18] Dario Cordero-Erausquin,et al. Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .
[19] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[20] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[21] F. Barthe. Inégalités fonctionnelles et géométriques obtenues par transport des mesures , 1997 .
[22] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[23] R. McCann. A convexity theory for interacting gases and equilibrium crystals , 1994 .
[24] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[25] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[26] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[27] T. Aubin,et al. Problèmes isopérimétriques et espaces de Sobolev , 1976 .
[28] C. Borell. Convex set functions ind-space , 1975 .
[29] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.