Nonlinear system modeling based on bilinear Laguerre orthonormal bases.

This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System.

[1]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[2]  José Ragot,et al.  Decomposition of an ARX model on Laguerre orthonormal bases. , 2012, ISA transactions.

[3]  R. Malti Représentation de systèmes discrets sur la base des filtres orthogonaux : application à la modélisation de systèmes dynamiques multi-variables , 1999 .

[4]  Rifat Hacioglu,et al.  Reduced Complexity Volterra Models for Nonlinear System Identification , 2001, EURASIP J. Adv. Signal Process..

[5]  Mark Beale,et al.  Neural Network Toolbox™ User's Guide , 2015 .

[6]  E. Baeyens,et al.  Identification of multivariable Hammerstein systems using rational orthonormal bases , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[7]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[8]  Guo-Xing Wen,et al.  Adaptive fuzzy-neural tracking control for uncertain nonlinear discrete-time systems in the NARMAX form , 2011 .

[9]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[10]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[11]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[12]  Junhong Nie,et al.  A neural approach to fuzzy modeling , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[13]  Richard W. Longman,et al.  Identification of discrete-time bilinear systems through equivalent linear models , 2012 .

[14]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[15]  Matthew A. Franchek,et al.  NARMAX modelling and robust control of internal combustion engines , 1999 .

[16]  R. Kearney,et al.  A bootstrap method for structure detection of NARMAX models , 2004 .

[17]  B. Wahlberg System identification using Laguerre models , 1991 .

[18]  Wagner Caradori do Amaral,et al.  Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..

[19]  H. Nijmeijer,et al.  A Volterra Series Approach to the Approximation of Stochastic Nonlinear Dynamics , 2002 .

[20]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[21]  Ganapati Panda,et al.  Robust identification of nonlinear complex systems using low complexity ANN and particle swarm optimization technique , 2011, Expert Syst. Appl..

[22]  Alireza Rahrooh,et al.  Identification of nonlinear systems using NARMAX model , 2009 .