On the minimum distance of ternary cyclic codes

There are many ways to find lower bounds for the minimum distance of a cyclic code, based on investigation of the defining set. Some new theorems are derived. These and earlier techniques are applied to find lower bounds for the minimum distance of ternary cyclic codes. Furthermore, the exact minimum distance of ternary cyclic codes of length less than 40 is computed numerically. A table is given containing all ternary cyclic codes of length less than 40 and having a minimum distance exceeding the BCH bound. It seems that almost all lower bounds are equal to the minimum distance. Especially shifting, which is also done by computer, seems to be very powerful. For length 40 >