Studying calcium-triggered vesicle fusion in a single vesicle-vesicle content and lipid-mixing system

[1]  Patricia Grob,et al.  Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion , 2012, eLife.

[2]  Gregory W. Gundersen,et al.  Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct Stages , 2012, Science.

[3]  R. Jahn,et al.  Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex , 2012, Science.

[4]  G. van den Bogaart,et al.  Cis- and trans-membrane interactions of synaptotagmin-1 , 2012, Proceedings of the National Academy of Sciences.

[5]  C. Joo,et al.  A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins , 2012, Nature Protocols.

[6]  J. Rothman,et al.  Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells , 2012, Nature Protocols.

[7]  R. Jahn,et al.  Measuring Ca2+-induced structural changes in lipid monolayers: implications for synaptic vesicle exocytosis. , 2012, Biophysical journal.

[8]  Mark Bates,et al.  Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  E. Chapman,et al.  Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion , 2011, The Journal of cell biology.

[10]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[11]  Patricia Grob,et al.  In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release , 2011, Proceedings of the National Academy of Sciences.

[12]  Wei Li,et al.  Munc13 Mediates the Transition from the Closed Syntaxin–Munc18 complex to the SNARE complex , 2011, Nature Structural &Molecular Biology.

[13]  Marta K. Domanska,et al.  Single SNARE-mediated vesicle fusion observed in vitro by polarized TIRFM. , 2010, Biophysical journal.

[14]  T. Ha,et al.  A single vesicle content mixing assay for SNARE-mediated membrane fusion , 2010, Nature communications.

[15]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[16]  Changbong Hyeon,et al.  Dynamic Ca2+-Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1 , 2010, Science.

[17]  Jeff Coleman,et al.  A fast, single-vesicle fusion assay mimics physiological SNARE requirements , 2010, Proceedings of the National Academy of Sciences.

[18]  R. Jahn,et al.  Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS , 2009, Proceedings of the National Academy of Sciences.

[19]  Elizabeth A. Smith,et al.  Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution. , 2009, Biophysical journal.

[20]  S. Boxer,et al.  Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides , 2009, Proceedings of the National Academy of Sciences.

[21]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[22]  S. Chu,et al.  Resolving cadherin interactions and binding cooperativity at the single-molecule level , 2009, Proceedings of the National Academy of Sciences.

[23]  Antoine M. van Oijen,et al.  Single-particle kinetics of influenza virus membrane fusion , 2008, Proceedings of the National Academy of Sciences.

[24]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[25]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[26]  W. Wickner,et al.  Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing , 2007, Proceedings of the National Academy of Sciences.

[27]  T. Ha,et al.  Multiple intermediates in SNARE-induced membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[28]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[29]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[30]  M. Jackson,et al.  Fusion pores and fusion machines in Ca2+-triggered exocytosis. , 2006, Annual review of biophysics and biomolecular structure.

[31]  A. Brunger,et al.  Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). , 2004, Biophysical journal.

[32]  T. Südhof The synaptic vesicle cycle , 2004 .

[33]  Axel T. Brunger,et al.  Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[35]  Thomas Voets,et al.  Mechanisms Underlying Phasic and Sustained Secretion in Chromaffin Cells from Mouse Adrenal Slices , 1999, Neuron.

[36]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[37]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[38]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[39]  T. Hökfelt,et al.  Peptide secretion: what do we know? , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[41]  M. Lindau,et al.  Techniques and concepts in exocytosis: focus on mast cells. , 1991, Biochimica et biophysica acta.

[42]  B. Katz,et al.  Spontaneous and evoked activity of motor nerve endings in calcium Ringer , 1969, The Journal of physiology.