Ablation behavior of high-entropy boride (Hf-Zr-Ta-Ti)B2 coating fabricated via supersonic atmospheric plasma spraying for carbon/carbon composites

[1]  Rida Zhao,et al.  Construction of a ceramic coating with low residual stress on C/CA composites for thermal protection at ultra-high temperatures , 2023, Composites Part B: Engineering.

[2]  Jiecai Han,et al.  Dual bionics of structure and preparation: Gradient architectured carbon/ceramic composite as light as water but bearing ultra-high temperature max to 2500 °C , 2023, Composites Part B: Engineering.

[3]  Q. Fu,et al.  Effects of air plasma flame on the ZrB2-based UHTC coatings: Microstructure, phase evolution and ablation resistance , 2023, Journal of Materials Science & Technology.

[4]  Jie Liu,et al.  Strong high-entropy diboride ceramics with oxide impurities at 1800°C , 2023, Science China Materials.

[5]  Yuchi Fan,et al.  Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000 °C , 2023, Journal of the European Ceramic Society.

[6]  Yiguang Wang,et al.  Oxyacetylene ablation of (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C at 1350 − 2050 °C , 2023, Journal of the European Ceramic Society.

[7]  Yuan Cheng,et al.  Modification of SiBCN by Zr atom and its effect on ablative resistance of Cf/SiBCN(Zr) composites , 2023, Composites Part B: Engineering.

[8]  J. Lv,et al.  A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 °C , 2022, Composites Part B: Engineering.

[9]  Xiang Xiong,et al.  Elucidating the role of preferential oxidation during ablation: Insights on the design and optimization of multicomponent ultra-high temperature ceramics , 2022, Journal of Advanced Ceramics.

[10]  Yuyu Zhang,et al.  In-situ phase evolution of multi-component boride to high-entropy ceramic upon ultra-high temperature ablation , 2022, Journal of the European Ceramic Society.

[11]  Y. Sun,et al.  Temperature-dependent fracture behaviour of superstructure Hf6Ta2O17 from ambient temperature to 1600°C , 2022, Ceramics International.

[12]  S. Dong,et al.  Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C–SiC high-entropy ceramic matrix composites , 2022, Composites Part B: Engineering.

[13]  Yulei Zhang,et al.  Microstructure evolution of HfB2-SiC/SiC coating for C/C composites during long-term oxidation at 1700°C , 2022, Corrosion Science.

[14]  Q. Fu,et al.  Recent Progress in 1D Nanostructures Reinforced Carbon/Carbon Composites , 2022, Advanced Functional Materials.

[15]  M. Reece,et al.  Ablation behaviour of (Hf‐Ta‐Zr‐Nb‐Ti)C high entropy carbide and (Hf‐Ta‐Zr‐Nb‐Ti)C‐xSiC composites , 2022, Journal of the American Ceramic Society.

[16]  B. Zhou,et al.  Thermodynamic modeling of the Ta-O system , 2022, Calphad.

[17]  Jiecai Han,et al.  Advances in ultra-high temperature ceramics, composites, and coatings , 2021, Journal of Advanced Ceramics.

[18]  Ruixiao Zheng,et al.  Microstructure and oxidation mechanism of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic , 2021, Journal of the European Ceramic Society.

[19]  Yong Du,et al.  Phase equilibria in the ZrO2-Ta2O5-Nb2O5 system: experimental studies and thermodynamic modeling , 2021 .

[20]  Yulei Zhang,et al.  Long-time ablation behavior of the multilayer alternating CVD-(SiC/HfC)3 coating for carbon/carbon composites , 2021, Corrosion Science.

[21]  B. Pint,et al.  Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications , 2021 .

[22]  S. Dong,et al.  Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis , 2021 .

[23]  D. Brenner,et al.  High-Entropy Ultra-High-Temperature Borides and Carbides: A New Class of Materials for Extreme Environments , 2021 .

[24]  Jian Luo,et al.  Part II: Experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics , 2020 .

[25]  Jian Luo,et al.  Part I: Theoretical predictions of preferential oxidation in refractory high entropy materials , 2020, Acta Materialia.

[26]  A. Mukhopadhyay,et al.  Review on ultra-high temperature boride ceramics , 2020, Progress in Materials Science.

[27]  Guo‐Jun Zhang,et al.  Mechanical properties of hot-pressed high-entropy diboride-based ceramics , 2020, Journal of Advanced Ceramics.

[28]  A. Abdollahi,et al.  Erosion mechanism of ternary-phase SiC/ZrB2-MoSi2-SiC ultra-high temperature multilayer coating under supersonic flame at 90° angle with speed of 1400 m/s (Mach 4) , 2020 .

[29]  G. Hilmas,et al.  A simple route to fabricate strong boride hierarchical composites for use at ultra-high temperature , 2020 .

[30]  Beilin Ye,et al.  Synthesis of high‐purity high‐entropy metal diboride powders by boro/carbothermal reduction , 2019, Journal of the American Ceramic Society.

[31]  Yanchun Zhou,et al.  Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A novel strategy towards making ultrahigh temperature ceramics thermal insulating , 2019, Journal of Materials Science & Technology.

[32]  A. Navrotsky,et al.  In‐situ determination of the HfO 2 –Ta 2 O 5 ‐temperature phase diagram up to 3000°C , 2019, Journal of the American Ceramic Society.

[33]  T. Wen,et al.  Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air , 2019, Corrosion Science.

[34]  E. Opila,et al.  Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials , 2019, Journal of the European Ceramic Society.

[35]  Q. Fu,et al.  Effects of thermal shock on the microstructures, mechanical and thermophysical properties of SiCnws-C/C composites , 2019, Composites Part B: Engineering.

[36]  W. Kriven,et al.  Crystal structure solution for the A6B2O17 (A = Zr, Hf; B = Nb, Ta) superstructure. , 2019, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[37]  T. Wen,et al.  Synthesis of superfine high-entropy metal diboride powders , 2019, Scripta Materialia.

[38]  Yulei Zhang,et al.  Ablation properties of HfB2 coatings prepared by supersonic atmospheric plasma spraying for SiC-coated carbon/carbon composites , 2019, Surface and Coatings Technology.

[39]  P. Withers,et al.  Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C , 2017, Nature Communications.

[40]  H. Kleebe,et al.  Critical oxidation behavior of Ta-containing ZrB2 composites in the 1500–1650 °C temperature range , 2017 .

[41]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[42]  Nitin P. Padture,et al.  Advanced structural ceramics in aerospace propulsion. , 2016, Nature materials.

[43]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[44]  Hejun Li,et al.  Ablation resistance of ZrB2–SiC coating prepared by supersonic atmosphere plasma spraying for SiC-coated carbon/carbon composites , 2014 .

[45]  V. Medri,et al.  Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures , 2010 .

[46]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[47]  Mark M. Opeka,et al.  A Model for the Oxidation of ZrB2, HfB2 and TiB2 (Postprint) , 2007 .

[48]  Zi-kui Liu,et al.  Thermodynamic modeling of the Hf–Si–O system , 2006, 0708.4239.

[49]  F. Aldinger,et al.  “The Zirconia−Hafnia System: DTA Measurements and Thermodynamic Calculations” , 2006 .

[50]  U. Troitzsch,et al.  The ZrO2-TiO2 phase diagram , 2005 .

[51]  D. Van Wie,et al.  The hypersonic environment: Required operating conditions and design challenges , 2004 .

[52]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[53]  W. L. Vaughn,et al.  Active‐to‐Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air , 1990 .

[54]  J. Coutures The System HfO2‐TiO2 , 1987 .

[55]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[56]  K. Ray,et al.  Oxidation behavior of hot pressed ZrB2-SiC and HfB2-SiC composites , 2011 .