Mapping of Central Africa Forested Wetlands Using Remote Sensing

Wetlands represent 6% of the Earth's land cover surface. They are of crucial importance in the global water cycle and climatic dynamics. Nowadays, wetlands are the most threatened land cover type, nevertheless their spatial distribution and ecological functions are poorly documented. Despite the need for more detailed information, wetland mapping is a rare activity. Few data are available mainly because of the complexity of obtaining good field data. We therefore propose a method based on multisensor imagery analysis to characterize land cover patterns of the second largest wetland area of the world (The Cuvette Centrale of the Congo River Basin). The time series of moderate resolution imaging spectroradiometer (MODIS) enhanced vegetation index (EVI) images are used to map land cover types based on their phenological differences. Flooded areas in the Congo basin have been mapped during different seasons using L-band synthetic aperture radar (PALSAR) imagery. The associated model has been improved upon by the addition of elevation data as well as mean canopy heights acquired with light detection and ranging (LIDAR) data. The result of this study is the first detailed spatial distribution of four forested wetland types within the Cuvette Centrale of the Congo River Basin. This study demonstrates that the spatial organization of the floodplain landscape depends on the extent of flooding. The results also show that land cover phenology is closely related to the time period of flooding and solar intensity for this region, similarly to what is observed in the extensive floodplain of the Amazon basin.

[1]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[2]  Cedo Maksimovic,et al.  Frontiers in Urban Water Management: Deadlock or Hope , 2001 .

[3]  Valentyn Tolpekin,et al.  Angular Backscatter Variation in L-Band ALOS ScanSAR Images of Tropical Forest Areas , 2010, IEEE Geoscience and Remote Sensing Letters.

[4]  Claude Censier Caractérisation de processus d'érosion régressive par analyse sédimentologique comparée des sables du chenal et des barres du cours inférieur de l'Oubangui (République Centrafricaine, Congo, Zaïre) , 1996 .

[5]  F. Scarano,et al.  Plant establishment on flooded and unflooded patches of a freshwater swamp forest in southeastern Brazil , 1997, Journal of Tropical Ecology.

[6]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[7]  Debbie Whitall,et al.  WETLANDS , 1995, Restoration & Management Notes.

[8]  Viviana Horna,et al.  Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests , 2002, Journal of Tropical Ecology.

[9]  S. Frazier,et al.  Ramsar sites overview: a synopsis of the world's wetlands of international importance. , 1999 .

[10]  M. Beauchemin,et al.  Modelling Forest Stands with MIMICS: Implications for Calibration , 1995 .

[11]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[12]  C. Evrard,et al.  Recherches écologiques sur le peuplement forestier des sols hydromorphes de la Cuvette central congolaise , 1968 .

[13]  Zhenghao Shi,et al.  A comparison of digital speckle filters , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[14]  E. Devroey Le Kasai et son bassin hydrographique , 1939 .

[15]  J. Baron,et al.  POTENTIAL EFFECTS OF CLIMATE CHANGE ON SURFACE‐WATER QUALITY IN NORTH AMERICA 1 , 2000 .

[16]  Dominic Kniveton,et al.  Understanding the Large Scale Driving Mechanisms of Rainfall Variability over Central Africa , 2011 .

[17]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[18]  Carlos Alfredo Joly,et al.  Physiological and anatomical adaptations by young Astrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of central Amazonia. , 1993 .

[19]  F. Wittmann,et al.  A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands , 2011, Wetlands.

[20]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[21]  T. L. Toan,et al.  Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data , 2007 .

[22]  Pia Parolin,et al.  Photochemical capacity after submersion in darkness: How Amazonian floodplain trees cope with extreme flooding , 2010 .

[23]  Pierre Camberlin,et al.  Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical ocean surface , 2000 .

[24]  Paul A. Keddy,et al.  Wet and Wonderful: The World's Largest Wetlands are Conservation Priorities , 2009 .

[25]  D. Hey,et al.  Flood Reduction through Wetland Restoration: The Upper Mississippi River Basin as a Case History , 1995 .

[26]  Inez Y. Fung,et al.  Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources , 1987 .

[27]  A. Neuenschwander,et al.  Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping , 2008 .

[28]  J. Bricquet,et al.  Transport en solution et en suspension par le fleuve Congo (Zaire) et ses principaux affluents de la rive droite / Transport in solution and in suspension by the main Congo River and its principal right bank tributaries , 1993 .

[29]  E. Maltby,et al.  Wetland management goals: wise use and conservation , 1991 .

[30]  Valéry Gond,et al.  Broad-scale spatial pattern of forest landscape types in the Guiana Shield , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[31]  Nicolas Baghdadi,et al.  Evaluation of C-band SAR data for wetlands mapping , 2001 .

[32]  W. Junk,et al.  The Amazon River basin , 2005 .

[33]  Carel P. van Schaik,et al.  Light and the Phenology of Tropical Trees , 1994, The American Naturalist.

[34]  A. Cazenave,et al.  Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels , 2005 .

[35]  Daniel Sabatier,et al.  Tropical forest phenology in French Guiana from MODIS time series , 2011 .

[36]  Christian Thiel,et al.  Operational Large-Area Forest Monitoring in Siberia Using ALOS PALSAR Summer Intensities and Winter Coherence , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[37]  A. Laraque,et al.  Banque de données hydrologiques des affluents congolais du fleuve Congo-Zaïre et informations physiographiques , 1995 .

[38]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[39]  Jean-Pierre Bricquet,et al.  LES ECOULEMENTS DU CONGO A BRAZZAVILLE ET LA SPATIALISATION DES APPORTS , 1993 .

[40]  Yong Wang,et al.  Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling☆ , 1995 .

[41]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[42]  Drew T. Shindell,et al.  Impacts of climate change on methane emissions from wetlands , 2004 .

[43]  Loet Leydesdorff,et al.  The Knowledge-Based Economy , 2006 .

[44]  David P. Roy,et al.  Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices , 2010 .

[45]  Qi Chen Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry , 2010 .

[46]  Edward Maltby,et al.  Waterlogged Wealth: Why Waste the World's Wet Places , 1986 .

[47]  Pierre Camberlin,et al.  Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea‐surface temperature: Atlantic vs. ENSO , 2001 .

[48]  Danièle Devitre,et al.  Le manuel de la Convention de Ramsar : guide de la Convention relative aux zones humides d'importance internationale, particulièrement comme habitats des oiseaux d'eau , 1996 .

[49]  Christelle Vancutsem,et al.  Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[50]  Carlos A. Peres,et al.  Tree Phenology in Adjacent Amazonian Flooded and Unflooded Forests 1 , 2005 .

[51]  Shaun Quegan,et al.  Retrieval of Bio- and Geo-Physical Parameters from SAR Data for Land Applications. , 2002 .

[52]  M. Acreman,et al.  The role of wetlands in the hydrological cycle , 2003 .

[53]  R. L. Thorndike Who belongs in the family? , 1953 .

[54]  Robert Arfi Processus d'édification des ressources naturelles en zones inondables tropicales , 2002 .

[55]  Frédéric Achard,et al.  Tropical forest mapping from coarse spatial resolution satellite data: Production and accuracy assessment issues , 2001 .

[56]  Mamdouh Shahin,et al.  Hydrology and water resources of Africa , 2002 .

[57]  Bruce Walker Nelson,et al.  Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. , 2009 .

[58]  Maycira Costa,et al.  Using ALOS/PALSAR and RADARSAT-2 to Map Land Cover and Seasonal Inundation in the Brazilian Pantanal , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[59]  M. Khalil,et al.  Atmospheric methane : its role in the global environment , 2000 .

[60]  F. Scarano,et al.  A comparison of dispersal, germination and establishment of woody plants subjected to distinct flooding regimes in Brazilian flood-prone forests and estuarine vegetation , 1998 .

[61]  D. Roy,et al.  Large seasonal swings in leaf area of Amazon rainforests , 2007, Proceedings of the National Academy of Sciences.

[62]  Pia Parolin,et al.  Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. , 2009, Annals of botany.

[63]  W. Junk The flood pulse concept in river-floodplain systems , 1989 .

[64]  A. Huete,et al.  Amazon rainforests green‐up with sunlight in dry season , 2006 .

[65]  D. Anhuf,et al.  Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques , 2002, Journal of Tropical Ecology.

[66]  Juilson Jubanski,et al.  ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia , 2011, Remote. Sens..

[67]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .

[68]  F. Wittmann,et al.  Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems , 2010, AoB PLANTS.