Dimension reduction in nonparametric models of production

It is well-known that the convergence rates of nonparametric efficiency estimators (e.g., free-disposal hull and data envelopment analysis estimators) become slower with increasing numbers of input and output quantities (i.e., dimensionality). Dimension reduction is often utilized in non-parametric density and regression where similar problems occur, but has been used in only a few instances in the context of efficiency estimation. This paper explains why the problem occurs in nonparametric models of production and proposes three diagnostics for when dimension reduction might lead to more accurate estimation of efficiency. Simulation results provide additional insight, and suggest that in many cases dimension reduction is advantageous in terms of reducing estimation error. The simulation results also suggest that when dimensionality is reduced, free-disposal hull estimators become an attractive, viable alternative to the more frequently used (and more restrictive) data envelopment analysis estimators. In the context of efficiency estimation, these results provide the first quantification of the tradeoff between information lost versus improvement in estimation error due to dimension reduction. Results from several papers in the literature are revisited to show what might be gained from reducing dimensionality and how interpretations might differ.

[1]  Léopold Simar,et al.  Frontier estimation in nonparametric location-scale models , 2014 .

[2]  Jerome Spanier,et al.  Dynamic creation of pseudorandom number generators , 2000 .

[3]  P. W. Wilson,et al.  Nonparametric Estimation of Efficiency in the Presence of Environmental Variables , 2016 .

[4]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[5]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[6]  P. W. Wilson,et al.  Nonparametric analysis of returns to scale in the US hospital industry , 2004 .

[7]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[8]  Léopold Simar,et al.  Testing Hypotheses in Nonparametric Models of Production , 2016 .

[9]  Nicole Adler,et al.  Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction , 2010, Eur. J. Oper. Res..

[10]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[11]  Léopold Simar,et al.  A Note on the Convergence of Nonparametric DEA Efficiency Measures , 1996 .

[12]  Léopold Simar,et al.  Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications , 2007 .

[13]  Ragan Petrie,et al.  Farm Household Production Efficiency: Evidence from the Gambia , 2005 .

[14]  D. Giokas,et al.  A Study of the Relative Efficiency of Bank Branches: An Application of Data Envelopment Analysis , 1990 .

[15]  Léopold Simar,et al.  Probabilistic characterization of directional distances and their robust versions , 2012 .

[16]  Aman Ullah,et al.  Nonparametric Econometrics: Introduction , 1999 .

[17]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[18]  R. Raab,et al.  Identifying Subareas that Comprise a Greater Metropolitan Area: The Criterion of County Relative Efficiency , 2002 .

[19]  Emmanuel Thanassoulis,et al.  Applied data envelopment analysis , 1991 .

[20]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[21]  Cláudia S. Sarrico,et al.  Pitfalls and protocols in DEA , 2001, Eur. J. Oper. Res..

[22]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[23]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[24]  Paul W. Wilson,et al.  Hospital Ownership and Technical Inefficiency , 1996 .

[25]  Carsten Homburg,et al.  Using data envelopment analysis to benchmark activities , 2001 .

[26]  Zilla Sinuany-Stern,et al.  Combining ranking scales and selecting variables in the DEA context: the case of industrial branches , 1998, Comput. Oper. Res..

[27]  Ramu Ramanathan,et al.  An Introduction to Data Envelopment Analysis , 2003 .

[28]  Léopold Simar,et al.  Statistical Approaches for Non‐parametric Frontier Models: A Guided Tour , 2015 .

[29]  Mervin E. Muller,et al.  A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.

[30]  Léopold Simar,et al.  WHEN BIAS KILLS THE VARIANCE: CENTRAL LIMIT THEOREMS FOR DEA AND FDH EFFICIENCY SCORES , 2014, Econometric Theory.

[31]  David A. Belsley,et al.  Regression Analysis and its Application: A Data-Oriented Approach.@@@Applied Linear Regression.@@@Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1981 .

[32]  Yaakov Roll,et al.  An application procedure for DEA , 1989 .

[33]  B. Park,et al.  A NOTE ON THE CONVERGENCE OF NONPARAMETRIC DEA ESTIMATORS FOR PRODUCTION EFFICIENCY SCORES , 1998, Econometric Theory.

[34]  R. Shepherd Theory of cost and production functions , 1970 .

[35]  David C. Wheelock,et al.  Do Large Banks have Lower Costs? New Estimates of Returns to Scale for U.S. Banks , 2011 .

[36]  Xavier de Luna,et al.  Data-driven algorithms for dimension reduction in causal inference , 2017, Comput. Stat. Data Anal..

[37]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[38]  Marcus Porembski,et al.  Visualizing Efficiency and Reference Relations in Data Envelopment Analysis with an Application to the Branches of a German Bank , 2005 .

[39]  Paul W. Wilson,et al.  Detecting influential observations in data envelopment analysis , 1995 .

[40]  Paul W. Wilson,et al.  New evidence on returns to scale and product mix among U.S. commercial banks , 2001 .

[41]  David C. Wheelock,et al.  Non-Parametric, Unconditional Quantile Estimation for Efficiency Analysis With an Application to Federal Reserve Check Processing Operations , 2007 .

[42]  Léopold Simar,et al.  Detecting Outliers in Frontier Models: A Simple Approach , 2003 .

[43]  N. Adler,et al.  Benchmarking airports from a managerial perspective , 2013 .

[44]  P. W. Wilson,et al.  Asymptotics for DEA estimators in non-parametric frontier models , 2003 .

[45]  W. Bowlin,et al.  Measuring Performance: An Introduction to Data Envelopment Analysis (DEA) , 1998 .

[46]  Rolf Färe,et al.  Fundamentals of production theory , 1988 .

[47]  Paul W. Wilson,et al.  Asymptotic Properties of Some Non-Parametric Hyperbolic Efficiency Estimators , 2011 .

[48]  Christopher F. Parmeter,et al.  Applied Nonparametric Econometrics , 2015 .

[49]  Paul W. Wilson,et al.  Assessing the effect of high performance computing capabilities on academic research output , 2014, Empirical Economics.

[50]  William W. Cooper,et al.  Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through , 1981 .

[51]  Seok-Oh Jeong,et al.  ASYMPTOTIC DISTRIBUTION OF CONICAL-HULL ESTIMATORS OF DIRECTIONAL EDGES , 2010 .

[52]  T. Dalton INDIVISIBLE AND SPATIAL COMPONENTS OF DAIRY FIRM EFFICIENCY , 2004 .

[53]  Juan Aparicio,et al.  Translation Invariance in Data Envelopment Analysis , 2015 .

[54]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[55]  William W. Cooper,et al.  Sensitivity Analysis in DEA , 2011 .

[56]  Boaz Golany,et al.  Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe , 2001, Eur. J. Oper. Res..

[57]  Léopold Simar,et al.  FDH Efficiency Scores from a Stochastic Point of View , 1997 .

[58]  William F. Bowlin,et al.  Evaluating the Efficiency of US Air Force Real-Property Maintenance Activities , 1987 .

[59]  P. W. Wilson Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs , 1993 .

[60]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[61]  B. Geys,et al.  Research Area Markets and Politics Research Unit Market Processes and Governance Schwerpunkt Märkte Und Politik Abteilung Marktprozesse Und Steuerung Measuring Local Government Technical (in)efficiency: an Application and Comparison of Fdh, Dea and Econometric Approaches Iii Abstract Measuring Local , 2022 .

[62]  R. Färe,et al.  Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach , 1989 .

[63]  P. W. Wilson,et al.  Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives , 2013 .

[64]  Joseph C. Paradi,et al.  Assessing Bank and Bank Branch Performance , 2011 .

[65]  Qin Wang,et al.  Robust estimation and variable selection in sufficient dimension reduction , 2017, Comput. Stat. Data Anal..

[66]  L. Simar,et al.  Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .

[67]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[68]  Léopold Simar,et al.  Measuring firm performance using nonparametric quantile-type distances , 2017 .

[69]  Léopold Simar,et al.  Central Limit Theorems for Conditional Efficiency Measures and Tests of the ‘Separability’ Condition in Non�?Parametric, Two�?Stage Models of Production , 2018 .