Principles and applications of the nano-in-nano integration for multidisciplinary nanofluidics

[1]  Brian Kuhlman,et al.  Advances in protein structure prediction and design , 2019, Nature Reviews Molecular Cell Biology.

[2]  Jongwan Lee,et al.  A cracking-assisted micro-/nanofluidic fabrication platform for silver nanobelt arrays and nanosensors. , 2017, Nanoscale.

[3]  D. Marson,et al.  Mixed Fluorinated/Hydrogenated Self-Assembled Monolayer-Protected Gold Nanoparticles: In Silico and In Vitro Behavior. , 2019, Small.

[4]  S. Jacobson,et al.  Ion transport in nanofluidic funnels. , 2010, ACS nano.

[5]  J. Sweedler,et al.  Nanofluidics in chemical analysis. , 2010, Chemical Society reviews.

[6]  Koji Yamaguchi,et al.  Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures. , 2015, Lab on a chip.

[7]  Shuo Kang,et al.  Integrated biodetection in a nanofluidic device. , 2014, ACS nano.

[8]  K. Mawatari,et al.  A single-molecule ELISA device utilizing nanofluidics. , 2018, In Analysis.

[9]  P. Doll,et al.  Fabrication of silicon nanopillar arrays by electron beam lithography and reactive ion etching for advanced bacterial adhesion studies , 2019, Materials Research Express.

[10]  Katrin Wondraczek,et al.  Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber. , 2015, ACS nano.

[11]  Anders Kristensen,et al.  Nanofluidic devices towards single DNA molecule sequence mapping , 2012, Journal of biophotonics.

[12]  Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis. , 2019, Nanoscale.

[13]  F. Westerlund,et al.  Optical DNA mapping in nanofluidic devices: principles and applications. , 2017, Lab on a chip.

[14]  Takehiko Kitamori,et al.  Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. , 2013, Lab on a chip.

[15]  Dongqing Li,et al.  Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. , 2016, Lab on a chip.

[16]  J Michael Ramsey,et al.  Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. , 2011, Nano letters.

[17]  F. Persson,et al.  A single-step competitive binding assay for mapping of single DNA molecules. , 2012, Biochemical and biophysical research communications.

[18]  K. Mawatari,et al.  Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve. , 2012, Analytical chemistry.

[19]  H. Ström,et al.  A nanofluidic device for parallel single nanoparticle catalysis in solution , 2019, Nature Communications.

[20]  Takehiko Kitamori,et al.  Extended nanofluidic immunochemical reaction with femtoliter sample volumes. , 2014, Small.

[21]  Alessandro Siria,et al.  Massive radius-dependent flow slippage in carbon nanotubes , 2016, Nature.

[22]  Quanliang Cao,et al.  Rotational motion and lateral migration of an elliptical magnetic particle in a microchannel under a uniform magnetic field , 2017 .

[23]  M. Leake,et al.  Single-molecule techniques in biophysics: a review of the progress in methods and applications. , 2017, Reports on progress in physics. Physical Society.

[24]  Peter J Burke,et al.  Nanofluidic platform for single mitochondria analysis using fluorescence microscopy. , 2013, Analytical chemistry.

[25]  Wei Wang,et al.  Review article: Fabrication of nanofluidic devices. , 2013, Biomicrofluidics.

[26]  L. Ocola,et al.  Design and fabrication of a multilayer micro-/nanofluidic device with an electrically driven nanovalve , 2008 .

[27]  Takeshi Matsui,et al.  Graphene oxide nanosheet with high proton conductivity. , 2013, Journal of the American Chemical Society.

[28]  Lukas Nejdl,et al.  Fabrication of solid‐state nanopores and its perspectives , 2015, Electrophoresis.

[29]  Yury Gogotsi,et al.  Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. , 2016, ACS nano.

[30]  A. Hodge,et al.  Nanomaterials by design: a review of nanoscale metallic multilayers , 2020, Nanotechnology.

[31]  S. Kandlikar,et al.  Review of fabrication of nanochannels for single phase liquid flow , 2006 .

[32]  Yan Xu Nanofluidics: A New Arena for Materials Science , 2018, Advanced materials.

[33]  S. Kryuchkov,et al.  Revealing the Surface Effect on Gas Transport and Mechanical Properties in Nonporous Polymeric Membranes in Terms of Surface Free Energy. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[34]  Jongyoon Han,et al.  Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. , 2005, Lab on a chip.

[35]  T. Kitamori,et al.  Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device , 2020, Micromachines.

[36]  O. Ces,et al.  Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition , 2017, Microsystems & Nanoengineering.

[37]  H. Park,et al.  Ion transport in graphene nanofluidic channels. , 2016, Nanoscale.

[38]  Yanhong Tian,et al.  Recycled low-temperature direct bonding of Si/glass and glass/glass chips for detachable micro/nanofluidic devices , 2020 .

[39]  Atsushi Harada,et al.  Soft Matter‐Regulated Active Nanovalves Locally Self‐Assembled in Femtoliter Nanofluidic Channels , 2016, Advanced materials.

[40]  Xueye Chen,et al.  Review in manufacturing methods of nanochannels of bio-nanofluidic chips , 2018 .

[41]  Sergei Kulik,et al.  Femtosecond Laser Written Depressed-Cladding Waveguide 2 × 2, 1 × 2 and 3 × 3 Directional Couplers in Tm3+:YAG Crystal , 2019, Micromachines.

[42]  Serge G. Lemay,et al.  Unconventional Electrochemistry in Micro-/Nanofluidic Systems , 2016, Micromachines.

[43]  Nobuhiro Matsumoto,et al.  Site-specific nanopatterning of functional metallic and molecular arbitrary features in nanofluidic channels. , 2015, Lab on a chip.

[44]  Carbon Nanotubes and Nanofluidic Transport , 2009 .

[45]  A. Folch,et al.  3D-printed Quake-style microvalves and micropumps. , 2018, Lab on a chip.

[46]  H. Sheen,et al.  A Novel Thermal Bubble Valve Integrated Nanofluidic Preconcentrator for Highly Sensitive Biomarker Detection. , 2018, ACS sensors.

[47]  J. Biteen,et al.  Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair , 2015, Proceedings of the National Academy of Sciences.

[48]  Kuan Chen,et al.  Electron beam lithography in nanoscale fabrication: recent development , 2003 .

[49]  J. Eijkel,et al.  Technologies for nanofluidic systems: top-down vs. bottom-up--a review. , 2005, Lab on a chip.

[50]  Martin S. Lindner,et al.  Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease , 2019, Nature Microbiology.

[51]  Minseok S. Kim,et al.  Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications , 2015, Nature Communications.

[52]  Y. Xu,et al.  Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates , 2021, Micromachines.

[53]  K. Mawatari,et al.  Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics. , 2020, The Analyst.

[54]  Ronald W. Davis,et al.  Control of DNA capture by nanofluidic transistors. , 2012, ACS nano.

[55]  Nobuhiro Matsumoto,et al.  Flexible and in situ fabrication of nanochannels with high aspect ratios and nanopillar arrays in fused silica substrates utilizing focused ion beam , 2015 .

[56]  Rafael Yuste,et al.  Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. , 2017, Nature nanotechnology.

[57]  G. Schneider,et al.  Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond , 2015, Chemical Society reviews.

[58]  H. Shimizu,et al.  Advances in Label-Free Detections for Nanofluidic Analytical Devices , 2020, Micromachines.

[59]  Ling Lin,et al.  Micro/nanofluidics-enabled single-cell biochemical analysis , 2018 .

[60]  K. Mawatari,et al.  Detachable glass micro/nanofluidic device. , 2019, Biomicrofluidics.

[61]  K. Mawatari,et al.  Micro/extended-nano sampling interface from a living single cell. , 2017, The Analyst.

[62]  Yan Xu,et al.  An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions. , 2015, Small.

[63]  Takehiko Kitamori,et al.  Extended-nanofluidics: fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices. , 2014, Analytical chemistry.

[64]  Gun Young Jung,et al.  Nanochannel confinement: DNA stretch approaching full contour length. , 2011, Lab on a chip.

[65]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[66]  P. Giusto,et al.  Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes. , 2018, Angewandte Chemie.

[67]  Makusu Tsutsui,et al.  Controlling DNA translocation through gate modulation of nanopore wall surface charges. , 2011, ACS nano.

[68]  Yi‐Meng Sun,et al.  In situ fabrication of a temperature- and ethanol-responsive smart membrane in a microchip. , 2014, Lab on a chip.

[69]  Jin Wang,et al.  Mechano-nanofluidics: water transport through CNTs by mechanical actuation , 2018, Microfluidics and Nanofluidics.

[70]  Michelle L. Steen,et al.  Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment , 2002 .

[71]  Takehiko Kitamori,et al.  Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process , 2011, Analytical and Bioanalytical Chemistry.

[72]  N. Nguyen,et al.  Nanofluidic devices and their applications. , 2008, Analytical chemistry.

[73]  Á. Ríos,et al.  Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. , 2018, Talanta.

[74]  Patrick Tabeling,et al.  Physics and technological aspects of nanofluidics. , 2014, Lab on a chip.

[75]  James A. Heward,et al.  Corrigendum: Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes , 2015, Nature Communications.

[76]  Albert Folch,et al.  Microvalves and Micropumps for BioMEMS , 2011, Micromachines.

[77]  K. Mawatari,et al.  Nonfluorescent Molecule Detection in 102 nm Nanofluidic Channels by Photothermal Optical Diffraction. , 2019, Analytical chemistry.

[78]  Carlos E. Castro,et al.  Dynamic DNA nanotechnology: toward functional nanoscale devices , 2020, Nanoscale Horizons.

[79]  V. G. Kutchoukov,et al.  Fabrication of nanofluidic devices using glass-to-glass anodic bonding , 2004 .

[80]  C. Jen,et al.  Selective Detection of Human Lung Adenocarcinoma Cells Based on the Aptamer-Conjugated Self-Assembled Monolayer of Gold Nanoparticles , 2019, Micromachines.

[81]  Gaetano Scamarcio,et al.  Characterization of Covalently Bound Anti‐Human Immunoglobulins on Self‐Assembled Monolayer Modified Gold Electrodes , 2017, Advanced biosystems.

[82]  M. Wood,et al.  A silica nanochannel and its applications in sensing and molecular transport. , 2009, Analytical chemistry.

[83]  Stephen C Jacobson,et al.  Conductivity-based detection techniques in nanofluidic devices. , 2015, The Analyst.

[84]  Gou-Jen Wang,et al.  A Biosensor Electrode with Self-Assembled Monolayer of Gold Nanoparticle on a Micro Hemisphere Array , 2019, Journal of The Electrochemical Society.

[85]  Takehiko Kitamori,et al.  Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics , 2011, Analytical and Bioanalytical Chemistry.

[86]  J. Eijkel,et al.  Nanofluidic technology for biomolecule applications: a critical review. , 2010, Lab on a chip.

[87]  K. Mawatari,et al.  Communication—Evaporation Driven Micro/Nanofluidic Pumping Device , 2018 .

[88]  Graça Raposo,et al.  Extracellular vesicles: Exosomes, microvesicles, and friends , 2013, The Journal of cell biology.