Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection.
暂无分享,去创建一个
The critical role of cellular immunity during tuberculosis (TB) has been extensively studied, but the impact of Abs upon this infection remains poorly defined. Previously, we demonstrated that B cells are required for optimal protection in Mycobacterium tuberculosis-infected mice. FcgammaR modulate immunity by engaging Igs produced by B cells. We report that C57BL/6 mice deficient in inhibitory FcgammaRIIB (RIIB-/-) manifested enhanced mycobacterial containment and diminished immunopathology compared with wild-type controls. These findings corresponded with enhanced pulmonary Th1 responses, evidenced by increased IFN-gamma-producing CD4+ T cells, and elevated expression of MHC class II and costimulatory molecules B7-1 and B7-2 in the lungs. Upon M. tuberculosis infection and immune complex engagement, RIIB-/- macrophages produced more of the p40 component of the Th1-promoting cytokine IL-12. These data strongly suggest that FcgammaRIIB engagement can dampen the TB Th1 response by attenuating IL-12p40 production or activation of APCs. Conversely, C57BL/6 mice lacking the gamma-chain shared by activating FcgammaR had enhanced susceptibility and exacerbated immunopathology upon M. tuberculosis challenge, associated with increased production of the immunosuppressive cytokine IL-10. Thus, engagement of distinct FcgammaR can divergently affect cytokine production and susceptibility during M. tuberculosis infection.