How the silica determines properties of filled silicone rubber by the formation of filler networking and bound rubber

[1]  Yihu Song,et al.  Influence of carbon black on the Payne effect of filled natural rubber compounds , 2020 .

[2]  Sabu Thomas,et al.  Carbon black distribution in natural rubber/butadiene rubber blend composites: Distribution driven by morphology , 2020 .

[3]  Lixian Song,et al.  Intrinsic properties of the matrix and interface of filler reinforced silicone rubber: An in situ Rheo-SANS and constitutive model study , 2020 .

[4]  Yihu Song,et al.  Rheology of end-linking polydimethylsiloxane networks filled with silica , 2020 .

[5]  G. Zhong,et al.  How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study , 2020, Chinese Journal of Polymer Science.

[6]  P. Wriggers,et al.  Efficient modeling of filled rubber assuming stress-induced microscopic restructurization , 2020 .

[7]  G. Beaucage,et al.  Dispersion of surface-modified, aggregated, fumed silica in polymer nanocomposites , 2020 .

[8]  Yihu Song,et al.  Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites , 2020 .

[9]  Nan Tian,et al.  Cyclic tensile machine with wide speed range for in situ neutron/X-ray scattering study on elastomers. , 2020, The Review of scientific instruments.

[10]  Pengfei Lv,et al.  A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol–ene photopolymerization , 2019, Journal of Materials Chemistry A.

[11]  J. Jestin,et al.  Exchange Lifetimes of the Bound Polymer Layer on Silica Nanoparticles. , 2019, ACS macro letters.

[12]  N. Ning,et al.  Quantitatively identify and understand the interphase of SiO2/rubber nanocomposites by using nanomechanical mapping technique of AFM , 2019, Composites Science and Technology.

[13]  Makiko Ito,et al.  Dynamic Moduli Mapping of Silica-Filled Styrene–Butadiene Rubber Vulcanizate by Nanorheological Atomic Force Microscopy , 2019, Macromolecules.

[14]  G. Beaucage,et al.  Impact of an Emergent Hierarchical Filler Network on Nanocomposite Dynamics , 2018, Macromolecules.

[15]  Q. Tian,et al.  Upgrade of a small-angle neutron scattering spectrometer Suanni of China Mianyang Research Reactor , 2018, Journal of Instrumentation.

[16]  Jie Sun,et al.  Establishment of Constitutive Model of Silicone Rubber Foams Based on Statistical Theory of Rubber Elasticity , 2018, Chinese Journal of Polymer Science.

[17]  Xiaoliang Tang,et al.  Visualizing the Toughening Mechanism of Nanofiller with 3D X-ray Nano-CT: Stress-Induced Phase Separation of Silica Nanofiller and Silicone Polymer Double Networks , 2017 .

[18]  Z. Jia,et al.  Enhancing interfacial interaction and mechanical properties of styrene-butadiene rubber composites via silica-supported vulcanization accelerator , 2017 .

[19]  B. Sumpter,et al.  Focus: Structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. , 2017, The Journal of chemical physics.

[20]  K. Saalwächter,et al.  Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains , 2017 .

[21]  Yihu Song,et al.  Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics , 2016 .

[22]  V. Bocharova,et al.  Unexpected Molecular Weight Effect in Polymer Nanocomposites. , 2016, Physical review letters.

[23]  Erkan Senses,et al.  Role of Filler Shape and Connectivity on the Viscoelastic Behavior in Polymer Nanocomposites , 2015 .

[24]  Yunfa Chen,et al.  Polymer–filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber , 2013 .

[25]  M. Beiner,et al.  Mechanical Properties and Cross-Link Density of Styrene–Butadiene Model Composites Containing Fillers with Bimodal Particle Size Distribution , 2012 .

[26]  So Youn Kim,et al.  Polymer Dynamics in PEG-Silica Nanocomposites: Effects of Polymer Molecular Weight, Temperature and Solvent Dilution , 2012 .

[27]  J. Sommer,et al.  Cross-Link Density Estimation of PDMS Networks with Precise Consideration of Networks Defects , 2012 .

[28]  Ming Liu,et al.  Immobilized polymer layers on spherical nanoparticles , 2010 .

[29]  D. Yamaguchi,et al.  Structure Analyses of Swollen Rubber-Filler Systems by Using Contrast Variation SANS , 2009 .

[30]  J. Carretero‐González,et al.  Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber , 2008 .

[31]  M. Osman,et al.  Effect of the particle size on the viscoelastic properties of filled polyethylene , 2006 .

[32]  G. Beaucage,et al.  Rational design of reinforced rubber , 2002 .

[33]  H. Kaidou,et al.  Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems , 2001 .

[34]  M. Klüppel,et al.  A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems , 2000 .

[35]  Gregory Beaucage,et al.  Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering , 1995 .

[36]  F. Horkay,et al.  Thermodynamic interaction parameters in polymer solutions and gels , 1995 .

[37]  C. Tsenoglou Rubber Elasticity of Cross-Linked Networks with Trapped Entanglements and Dangling Chains , 1989 .