TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere

A chemistry-transport model (CTM) intercompar- ison experiment (TransCom-CH4) has been designed to in- vestigate the roles of surface emissions, transport and chemi- cal loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990-2007. All but one model transports were driven by reanalysis products from 3 different meteorological agen- cies. The transport and removal of CH4 in six different emission scenarios were simulated, with net global emis- sions of 513± 9 and 514± 14 Tg CH4 yr 1 for the 1990s

[1]  D. Griffith,et al.  The Australian methane budget: Interpreting surface and train‐borne measurements using a chemistry transport model , 2011 .

[2]  Use and uncertainty evaluation of a process-based model for assessing the methane budgets of global terrestrial ecosystems , 2011 .

[3]  S. Wofsy,et al.  HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Shamil Maksyutov,et al.  Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM , 2011 .

[5]  P. Jöckel,et al.  Small Interannual Variability of Global Atmospheric Hydroxyl , 2011, Science.

[6]  K. Corbin,et al.  Extending atmospheric CO2 and tracer capabilities in ACCESS , 2011 .

[7]  Tatsuya Yokota,et al.  Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite , 2010 .

[8]  R. Weiss,et al.  History of atmospheric SF 6 from 1973 to 2008 , 2010 .

[9]  S. Dhomse,et al.  Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model , 2010 .

[10]  Peter Bergamaschi,et al.  The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0 , 2010 .

[11]  E. Kort,et al.  Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada) , 2010 .

[12]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[13]  Catherine Prigent,et al.  An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales , 2010 .

[14]  R. Neale,et al.  Improvements in a half degree atmosphere/land version of the CCSM , 2010 .

[15]  R. Langenfelds,et al.  The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories , 2010 .

[16]  Akihiko Ito,et al.  Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model , 2010, Journal of Plant Research.

[17]  J. F. Meirink,et al.  Inverse Modeling of Global and Regional CH4 Emissions Using SCIAMACHY Satellite Retrievals , 2009 .

[18]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[19]  J. Lamarque,et al.  Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) , 2009 .

[20]  Tae-Young Goo,et al.  Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere , 2009 .

[21]  M. Chipperfield,et al.  Bromoform and dibromomethane in the tropics: a 3-D model study of chemistry and transport , 2009 .

[22]  K. Yagi,et al.  Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines , 2009 .

[23]  G. Dutton,et al.  Transport mechanisms for synoptic, seasonal and interannual SF 6 variations and "age" of air in troposphere , 2009 .

[24]  Nicholas C. Parazoo,et al.  TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic‐scale variations for the period 2002–2003 , 2008 .

[25]  Derek M. Cunnold,et al.  Renewed growth of atmospheric methane , 2008 .

[26]  Christopher D. Barnet,et al.  Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS) , 2008 .

[27]  Ilse Aben,et al.  Pressure broadening in the 2ν 3 band of methane and its implication on atmospheric retrievals , 2008 .

[28]  Toshiki Iwasaki,et al.  Global-scale transport of carbon dioxide in the troposphere , 2008 .

[29]  R. Vautard,et al.  TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002 , 2008, Global Biogeochemical Cycles.

[30]  Colette Brogniez,et al.  Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere , 2008 .

[31]  F. Aires,et al.  Global inundation dynamics inferred from multiple satellite observations, 1993–2000 , 2007 .

[32]  S. Kobayashi,et al.  The JRA-25 Reanalysis , 2007 .

[33]  Q. Fu,et al.  Widening of the tropical belt in a changing climate , 2007 .

[34]  D. Blake,et al.  Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane , 2006 .

[35]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[36]  J. B. Miller,et al.  Contribution of anthropogenic and natural sources to atmospheric methane variability , 2006, Nature.

[37]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[38]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[39]  R. Prinn,et al.  Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model , 2006 .

[40]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[41]  M. Chipperfield,et al.  New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments , 2006 .

[42]  E. Kowalczyk,et al.  Using atmospheric CO2 data to assess a simplified carbon-climate simulation for the 20th century , 2006 .

[43]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[44]  P. M. Lang,et al.  Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale , 2005 .

[45]  T. D. Mitchell,et al.  An improved method of constructing a database of monthly climate observations and associated high‐resolution grids , 2005 .

[46]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[47]  Derek M. Cunnold,et al.  Evidence for variability of atmospheric hydroxyl radicals over the past quarter century , 2005 .

[48]  Pieter P. Tans,et al.  CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions , 2004 .

[49]  Steven Pawson,et al.  Global CO2 transport simulations using meteorological data from the NASA data assimilation system , 2004 .

[50]  Michael B. McElroy,et al.  A 3‐D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997 , 2004 .

[51]  Peter Bergamaschi,et al.  European Geosciences Union Atmospheric Chemistry and Physics , 2005 .

[52]  G. Etiope,et al.  A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere , 2004 .

[53]  Philip Cameron-Smith,et al.  IMPACT, the LLNL 3‐D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases , 2004 .

[54]  Butler,et al.  Halocarbons and other Atmospheric Trace Species , 2004 .

[55]  P. M. Lang,et al.  Atmospheric methane levels off: Temporary pause or a new steady‐state? , 2003 .

[56]  J. Lelieveld,et al.  Continuing emissions of methyl chloroform from Europe , 2003, Nature.

[57]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[58]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 1. Model description , 2002 .

[59]  R. Francey,et al.  Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning , 2002 .

[60]  R. Weiss,et al.  In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences , 2002 .

[61]  Sander Houweling,et al.  Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations , 2002 .

[62]  John S. Woollen,et al.  NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society . , 2002 .

[63]  P. Midgley,et al.  The history of methyl chloroform emissions: 1951–2000 , 2001 .

[64]  R. Weiss,et al.  A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE , 2000 .

[65]  Sander Houweling,et al.  The modeling of tropospheric methane: How well can point measurements be reproduced by a global model? , 2000 .

[66]  Michael B. McElroy,et al.  Three-dimensional climatological distribution of tropospheric OH: Update and evaluation , 2000 .

[67]  Thomas Kaminski,et al.  Inverse modeling of methane sources and sinks using the adjoint of a global transport model , 1999 .

[68]  William J. Collins,et al.  3-D global simulations of tropospheric CO distributions - results of the GIM/IGAC intercomparison 1997 exercise , 1999 .

[69]  M. Takigawa,et al.  Simulation of ozone and other chemical species using a Center for Climate System Research/National Institute for Environmental Studies atmospheric GCM with coupled stratospheric chemistry , 1999 .

[70]  Pierre Friedlingstein,et al.  Three-dimensional transport and concentration of SF6. A model intercomparison study (TransCom 2) , 1999 .

[71]  Mingkui Cao,et al.  Global methane emission from wetlands and its sensitivity to climate change , 1998 .

[72]  E. J. Dlugokencky,et al.  Continuing decline in the growth rate of the atmospheric methane burden , 1998, Nature.

[73]  Peter Jan van Leeuwen,et al.  Global OH trend inferred from methylchloroform measurements , 1998 .

[74]  Martyn P. Chipperfield,et al.  Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers , 1997 .

[75]  James W. Elkins,et al.  Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time , 1997 .

[76]  Paul J. Crutzen,et al.  An inverse modeling approach to investigate the global atmospheric methane cycle , 1997 .

[77]  Inez Y. Fung,et al.  Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions , 1996 .

[78]  R. Cicerone,et al.  Modeling atmospheric δ13CH4 and the causes of recent changes in atmospheric CH4 amounts , 1996 .

[79]  I. Levin,et al.  Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85krypton and sulfur hexafluoride (SF6) , 1996 .

[80]  Christopher R. Webster,et al.  Validation of Halogen Occultation Experiment CH4 measurements from the UARS , 1996 .

[81]  R. A. Plumb A “tropical pipe” model of stratospheric transport , 1996 .

[82]  Velders Gjm,et al.  Description of the RIVM 2-dimensional stratosphere model , 1995 .

[83]  G. Lambert,et al.  Reevaluation of the oceanic flux of methane: Uncertainties and long term variations , 1993 .

[84]  S. Murayama,et al.  Measurements of atmospheric methane at the Japanese Antarctic Station, Syowa , 1992 .

[85]  J. Lerner,et al.  Three‐dimensional model synthesis of the global methane cycle , 1991 .

[86]  D. Jacob,et al.  Atmospheric distribution of 85Kr simulated with a general circulation model , 1987 .

[87]  Inez Y. Fung,et al.  Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources , 1987 .

[88]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[89]  M. Khalil,et al.  Atmospheric methane in the recent and ancient atmospheres Concentrations, trends, and interhemispheric gradient , 1984 .