Evidence for quiescent synchrotron emission in the black hole X-ray transient Swift J1357.2–0933

We present high time-resolution optical and infrared observations of the edge-on black hole X-ray transient Swift J1357.2-0933. Our data taken in 2012 shows the system to be at its pre-outburst magnitude and so the system is in quiescence. In contrast to other X-ray transients, the quiescent light curves of Swift J1357.2-0933 do not show the secondary star’s ellipsoidal modulation. The optical and infrared light curves is dominated by variability with an optical fractional rms of about 20 per cent, much larger than what is observed in other systems. The quiescent ultraviolet to mid-IR spectral energy distribution in quiescence is dominated by a nonthermal component with a power–law index of −1.4, (the broad-band rms SED has a similar index) which arises from optically thin synchrotron emission from a jet; the lack of a peak in the spectral energy distribution rules out advection-dominated models (based on [19]).

[1]  T. Shahbaz,et al.  A Black Hole Nova Obscured by an Inner Disk Torus , 2013, Science.

[2]  P. Gandhi,et al.  Jet spectral breaks in black hole X-ray binaries , 2012, 1211.1655.

[3]  J. Dexter,et al.  Self-consistent spectra from radiative GRMHD simulations of accretion on to Sgr A* , 2012, 1209.4599.

[4]  R. Wijnands,et al.  Multiwavelength spectral evolution during the 2011 outburst of the very faint X-ray transient Swift J1357.2−0933 , 2012, 1207.5805.

[5]  General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses? , 2012 .

[6]  A. Kong OPTICAL EMISSION OF THE BLACK HOLE X-RAY TRANSIENT MAXI J1659−152 DURING QUIESCENCE , 2012, 1210.6657.

[7]  C. Kouveliotou,et al.  MAXI J1659-152: the shortest orbital period black-hole transient in outburst , 2012, 1204.5840.

[8]  M. Davies,et al.  Investigating stellar‐mass black hole kicks , 2012, 1203.3077.

[9]  T. Maccarone,et al.  TESTING THE JET QUENCHING PARADIGM WITH AN ULTRADEEP OBSERVATION OF A STEADILY SOFT STATE BLACK HOLE , 2011, 1106.0723.

[10]  C. B. Markwardt,et al.  SWIFT OBSERVATIONS OF MAXI J1659−152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR , 2011, 1104.5228.

[11]  T. Belloni,et al.  Fast variability as a tracer of accretion regimes in black hole transients , 2010, 1008.0558.

[12]  X. D. Li,et al.  ORBITAL PERIOD AND OUTBURST LUMINOSITY OF TRANSIENT LOW MASS X-RAY BINARIES , 2010, 1006.0057.

[13]  S. Markoff,et al.  Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550–564 , 2010, 1002.3729.

[14]  T. Shahbaz,et al.  Observations of the quiescent X-ray transients GRS 1124–684 (=GU Mus) and Cen X-4 (=V822 Cen) taken with ULTRACAM on the VLT , 2010, 1001.0537.

[15]  N. Neumayer,et al.  The spectral energy distribution of the central parsecs of the nearest AGN , 2009, 0910.3771.

[16]  Chris L. Fryer,et al.  UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. II. THE CASE OF XTE J1118 + 480 , 2008, 0809.1588.

[17]  P. Chandra,et al.  Results from an Extensive Simultaneous Broadband Campaign on the Underluminous Active Nucleus M81*: Further Evidence for Mass-scaling Accretion in Black Holes , 2008, 0804.0344.

[18]  University of Warwick,et al.  Swift J1753.5–0127: The Black Hole Candidate with the Shortest Orbital Period , 2008, 0803.2524.

[19]  V. S. Dhillon,et al.  ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics , 2007 .

[20]  L. Song,et al.  X-Ray Spectral and Timing Properties of the Black Hole X-Ray Transient SWIFT J1753.5–0127 , 2007, astro-ph/0701489.

[21]  F. Frontera,et al.  Simultaneous Multiwavelength Observations of the Low/Hard State of the X-Ray Transient Source SWIFT J1753.5–0127 , 2006, astro-ph/0612575.

[22]  C. Knigge The Donor Stars of Cataclysmic Variables , 2006, astro-ph/0609671.

[23]  Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions , 2006, astro-ph/0606721.

[24]  D. Gelino,et al.  The Inclination Angle and Mass of the Black Hole in XTE J1118+480 , 2006, astro-ph/0601409.

[25]  J. McClintock,et al.  Compact Stellar X-Ray Sources: Black hole binaries , 2006 .

[26]  Eva K. Grebel,et al.  Empirical color transformations between SDSS photometry and Other photometric systems. , 2005 .

[27]  U. Sheffield,et al.  ULTRACAM observations of the black hole X-ray transient XTE J1118+480 in quiescence , 2005, astro-ph/0507511.

[28]  T. Shahbaz,et al.  Optical spectroscopy of flares from the black hole X-ray transient A0620-00 in quiescence , 2004, astro-ph/0408057.

[29]  P. G. Jonker,et al.  The distances to Galactic low-mass X-ray binaries: consequences for black hole luminosities and kicks , 2004 .

[30]  M. Garcia,et al.  MMT Observations of the Black Hole Candidate XTE J1118+480 near and in Quiescence , 2004, astro-ph/0405509.

[31]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[32]  The University of Texas at Austin,et al.  Multicolour observations of V404 Cyg with ULTRACAM , 2003, astro-ph/0309648.

[33]  T. Harrison,et al.  GRO J0422+32: The Lowest Mass Black Hole? , 2003, astro-ph/0308490.

[34]  R. Sunyaev,et al.  The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets , 2003, astro-ph/0305252.

[35]  A universal radio-X-ray correlation in low/hard state black hole binaries , 2003, astro-ph/0305231.

[36]  T. Shahbaz,et al.  Evidence for Optical Flares in Quiescent Soft X-Ray Transients , 2003 .

[37]  U. Southampton,et al.  The Optical Light Curves of XTE J2123–058. III. The Mass of the Binary Components and the Structure of the Quiescent Accretion Disk , 2002, astro-ph/0211154.

[38]  I. Rodrigues,et al.  The runaway black hole GRO J1655-40 ⋆ , 2002, astro-ph/0211445.

[39]  M. Colpi,et al.  Formation of an Evanescent Proto-Neutron Star Binary and the Origin of Pulsar Kicks , 2002, astro-ph/0207327.

[40]  A. King,et al.  The ultraviolet line spectrum of the soft X-ray transient XTE J1118+480: a CNO-processed core exposed , 2002, astro-ph/0202349.

[41]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[42]  R. P. Mignani,et al.  A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood , 2001, Nature.

[43]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[44]  David L. Meier,et al.  Submitted to The Astrophysical Journal Letters. Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE ASSOCIATION OF JET PRODUCTION WITH GEOMETRICALLY THICK ACCRETION FLOWS AND BLACK HOLE ROTATION , 2000 .

[45]  J. Cordes,et al.  Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins , 2000, astro-ph/0007272.

[46]  E. Quataert,et al.  Spectral Models of Advection-dominated Accretion Flows with Winds , 1998, astro-ph/9810136.

[47]  David A. Smith,et al.  The secondary stars in cataclysmic variables and low-mass X-ray binaries , 1998 .

[48]  T. Shahbaz,et al.  On the outburst amplitude of the soft X-ray transients , 1997, astro-ph/9710105.

[49]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997, astro-ph/9705237.

[50]  R. Narayan,et al.  Advection-dominated Accretion Model of the Black Hole V404 Cygni in Quiescence , 1996, astro-ph/9610014.

[51]  A. Burrows,et al.  Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. , 1995, Physical review letters.

[52]  Michael R. Garcia,et al.  Observations of the X-Ray Nova GRO J0422+32. II. Optical Spectra Approaching Quiescence , 1995, astro-ph/9509021.

[53]  Ramesh Narayan,et al.  A New Model for Black Hole Soft X-Ray Transients in Quiescence , 1995, astro-ph/9508014.

[54]  J. Orosz,et al.  Orbital Parameters of the Candidate Black Hole Binary GRO J0422+32 , 1995 .

[55]  Michael R. Garcia,et al.  Observations of the X-ray Nova GRO J0422+32. 1: Outburst and the decay to quiescence , 1995 .

[56]  Charles D. Bailyn,et al.  Quiescent accretion disks in black hole X-ray novae , 1994 .

[57]  M. Klis,et al.  Similarities in neutron star and black hole accretion , 1994 .

[58]  D. Lorimer,et al.  High birth velocities of radio pulsars , 1994, Nature.

[59]  E. L. Robinson,et al.  Spectroscopy of $A0620-00$: the mass of the black hole and an image of its accretion disc , 1994 .

[60]  I. Papadakis,et al.  Improved methods for power spectrum modelling of red noise , 1993 .

[61]  Brian R. Dennis,et al.  Frequency distributions and correlations of solar X-ray flare parameters , 1993 .

[62]  N. Panagia,et al.  The Hubble Space Telescope observations of X-ray nova Muscae 1991 and its spectral evolution , 1992 .

[63]  C. Haswell,et al.  A detection of orbital radial velocity variations of the primary component in the black hole binary A0620−00 (=V616 Monocerotis) , 1990 .

[64]  Brian Warner,et al.  Absolute magnitudes of cataclysmic variables , 1987 .

[65]  D. Clemens Massachusetts-Stony Brook Galactic plane CO survey: the galactic disk rotation curve. , 1985 .

[66]  S. Rappaport,et al.  A new technique for calculations of binary stellar evolution, with application to magnetic braking , 1983 .

[67]  D. Schneider,et al.  The magnetic maw of 2A 0311-22.7. , 1980 .

[68]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .