Introducing cymantrene labels into scattering scanning near-field infrared microscopy.

In this paper we investigate metal-organic compounds as infrared (IR) active labels by scattering scanning near-field infrared microscopy (IR s-SNOM, often also abbreviated as s-SNIM) with a lateral resolution of 90 × 90 nm(2). Tailor-made IR spectroscopic probes based on cymantrene (CpMn(CO)(3) with Cp = η(5)-C(5)H(5)) conjugated to a cysteine-modified pseudoneurotensin (pNT-Cys-OH) peptide were prepared by automated microwave-assisted solid phase peptide synthesis (SPPS) and characterized by HPLC, ESI-MS and IR. Well-defined patterned self-assembled monolayers on a gold surface were prepared by microcontact printing of 1-octadecanethiol (ODT) followed by additional incubation in ethanolic solution of the cymantrene-peptide derivative. The self-assembled monolayers have been evidenced by infrared reflection absorption spectroscopy (IRRAS) and AFM. CO laser source radiation was tuned (1944, 1900, 1798 and 1658 cm(-1)) for imaging contrast with good matching correlation between spectroscopic and topographic patterns at specific characteristic metal carbonyl and amide bands (1944 cm(-1) (λ = 5.14 μm) and 1658 cm(-1) (λ = 6.03 μm)). Cymantrene probes provide an attractive method to tag a unique spectroscopic feature on any bio(macro)molecule. Introducing such probes into super-resolution IR s-SNOM will enable molecular tracking and distribution studies even in complex biological systems.

[1]  A. Vessières,et al.  Recent Analytical Applications of Molecular Spectroscopy in Bioorganometallic Chemistry—Part I: Metal Carbonyls , 2012 .

[2]  Ilona Kopf,et al.  A matter of scale: from far‐field microscopy to near‐field nanoscopy , 2012 .

[3]  Non-invasive nano-imaging of ion implanted and activated copper in silicon , 2011 .

[4]  J. Rühe,et al.  Local chemical composition of nanophase-separated polymer brushes. , 2011, Physical chemistry chemical physics : PCCP.

[5]  Céline Mayet,et al.  Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. , 2011, Angewandte Chemie.

[6]  Harald Schneider,et al.  Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy. , 2010, Optics express.

[7]  J. Rühe,et al.  Smart polymer surfaces: mapping chemical landscapes on the nanometre scale , 2010 .

[8]  R. Hillenbrand,et al.  Infrared spectroscopic near-field mapping of single nanotransistors , 2010, Nanotechnology.

[9]  Konrad Meister,et al.  Markierungsfreie Visualisierung von löslichen Metallcarbonylkomplexen in lebenden Zellen mithilfe von Raman‐Mikrospektroskopie , 2010 .

[10]  Martina Havenith,et al.  Label-free imaging of metal-carbonyl complexes in live cells by Raman microspectroscopy. , 2010, Angewandte Chemie.

[11]  M. Raschke,et al.  Nano-optical investigations of the metal-insulator phase behavior of individual VO(2) microcrystals. , 2010, Nano letters.

[12]  E. Bakkers,et al.  Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. , 2010, Nano letters.

[13]  K. Merz,et al.  Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive CpMn(CO)3 peptide conjugates. , 2010, Dalton transactions.

[14]  G. Scoles,et al.  Detection of Hybridization on Nanografted Oligonucleotides Using Scanning Near-Field Infrared Microscopy , 2010 .

[15]  Jean-Sebastien Samson,et al.  Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy , 2009 .

[16]  R. Gust,et al.  Microwave-assisted solid-phase synthesis, cellular uptake, and cytotoxicity studies of cymantrene–peptide bioconjugates , 2009 .

[17]  R. Hillenbrand,et al.  Infrared nanoscopy of strained semiconductors. , 2009, Nature nanotechnology.

[18]  A. Zayats,et al.  Nano-optics and near-field optical microscopy , 2009 .

[19]  U. Schatzschneider,et al.  Cymantrene conjugation modulates the intracellular distribution and induces high cytotoxicity of a cell-penetrating peptide. , 2008, Chemical communications.

[20]  M. Havenith,et al.  SNIM: Scanning near-field infrared microscopy , 2008 .

[21]  M. Havenith,et al.  Nanoscale depth resolution in scanning near-field infrared microscopy. , 2008, Optics express.

[22]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[23]  Wee Chew,et al.  Bioimaging in the mid-infrared using an organometallic carbonyl tag. , 2007, Bioconjugate chemistry.

[24]  Christian Grunwald,et al.  Chemical imaging of microstructured self-assembled monolayers with nanometer resolution , 2007 .

[25]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[26]  Thomas Taubner,et al.  Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. , 2006, Nano letters.

[27]  Gerhard Schwaab,et al.  Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon. , 2006, Physical chemistry chemical physics : PCCP.

[28]  F. Keilmann,et al.  Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy , 2004 .

[29]  Jan-Martin Heldt,et al.  First carbonyl metallo immunoassay in the environmental area: application to the herbicide chlortoluron , 2002 .

[30]  Gilbert C. Walker,et al.  Monolayer-Sensitive Infrared Imaging of DNA Stripes Using Apertureless Near-Field Microscopy , 2002 .

[31]  F. Keilmann,et al.  Pure optical contrast in scattering‐type scanning near‐field microscopy , 2001, Journal of microscopy.

[32]  Gilbert C. Walker,et al.  Apertureless Scanning Near-Field Infrared Microscopy of a Rough Polymeric Surface , 2001 .

[33]  F. Keilmann,et al.  Infrared conductivity mapping for nanoelectronics , 2000 .

[34]  A. Varenne,et al.  A new application of bioorganometallics: the first simultaneous triple assay by the carbonylmetalloimmunoassay (CMIA) method , 1999 .

[35]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[36]  M. Havenith,et al.  High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5–6.6 μm wavelength region , 1999 .

[37]  G. Jaouen,et al.  Comparison of two means of attachment of an organometallic acid on gold surfaces by combining X-ray photoelectron spectroscopy and IR reflection spectroscopy , 1998 .

[38]  A. Boccara,et al.  Infrared near-field imaging of implanted semiconductors: Evidence of a pure dielectric contrast , 1997 .

[39]  D. Gourdon,et al.  Uniformly Flat Gold Surfaces: Imaging the Domain Structure of Organic Monolayers Using Scanning Force Microscopy , 1997 .

[40]  A. Boccara,et al.  Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda/600. , 1996, Optics letters.

[41]  A. Varenne,et al.  Production of specific antibodies and development of a non-isotopic immunoassay for carbamazepine by the carbonyl metallo-immunoassay (CMIA) method. , 1995, Journal of immunological methods.

[42]  W. Urban Physics and spectroscopic applications of carbon monoxide lasers, a review , 1995 .

[43]  A. Vessières,et al.  New applications of carbonylmetalloimmunoassay (CMIA): a non-radioisotopic approach to cortisol assay. , 1994, Journal of immunological methods.

[44]  A. Vessières,et al.  Carbonylmetalloimmunoassay (CMIA) a new type of non-radioisotopic immunoassay. Principles and application to phenobarbital assay. , 1992, Journal of immunological methods.