Comparing large-sample maximum Sharpe ratios and incremental variable testing

Most existing results on the distribution of the maximum Sharpe ratio depend on the assumption of multivariate normal return distributions. We use recent results from the literature to provide an analytical representation of the distribution of the difference between two maximum Sharpe ratios for much less restrictive distributional assumptions, both with and without short sales. Knowing the distribution of the difference enables us to test ex ante whether or not the inclusion of additional variables leads to a significant improvement in the maximum Sharpe ratio. In addition, we characterize the optimal long-only solution and provide conditions for global optimality.

[1]  E. Fama,et al.  Incremental Variables and the Investment Opportunity Set , 2015 .

[2]  Stoyan V. Stoyanov,et al.  Different Approaches to Risk Estimation in Portfolio Theory , 2004 .

[3]  Eugene Lukacs,et al.  A Characterization of the Normal Distribution , 1942 .

[4]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[5]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[6]  Raymond Kan,et al.  The Distribution of the Sample Minimum-Variance Frontier , 2007, Manag. Sci..

[7]  Stoyan V. Stoyanov,et al.  Optimal Financial Portfolios , 2005 .

[8]  E. Fama,et al.  Risk, Return, and Equilibrium: Empirical Tests , 1973, Journal of Political Economy.

[9]  R. A. Maller,et al.  New light on the portfolio allocation problem , 2003, Math. Methods Oper. Res..

[10]  Baoxue Zhang,et al.  Optimal algorithms and intuitive explanations for Markowitz’s portfolio selection model and Sharpe’s ratio with no short-selling , 2008 .

[11]  Liping Liu,et al.  A new foundation for the mean-variance analysis , 2004, Eur. J. Oper. Res..

[12]  R. C. Merton,et al.  An Analytic Derivation of the Efficient Portfolio Frontier , 1972, Journal of Financial and Quantitative Analysis.

[13]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[14]  Guofu Zhou,et al.  Tests of Mean-Variance Spanning , 2008 .

[15]  Yusif Simaan,et al.  The opportunity cost of mean-variance choice under estimation risk , 2014, Eur. J. Oper. Res..

[16]  Gur Huberman,et al.  Mean-Variance Spanning , 1987 .

[17]  R. Tourky,et al.  The large-sample distribution of the maximum Sharpe ratio with and without short sales , 2016 .

[18]  Ross Maller,et al.  Optimal portfolio choice using the maximum Sharpe ratio , 2010 .

[19]  John Douglas Opdyke,et al.  Comparing Sharpe ratios: So where are the p-values? , 2007 .

[20]  Colin Rose,et al.  Mathematical Statistics with Mathematica , 2002 .

[21]  Norbert Henze,et al.  A class of invariant consistent tests for multivariate normality , 1990 .