Radiolabeled block copolymer micelles for image-guided drug delivery.

[1]  Jiliang Wu,et al.  Effect of protein adsorption on cell uptake and blood clearance of methoxy poly(ethylene glycol)‐poly(caprolactone) nanoparticles , 2016 .

[2]  J. Yachnin,et al.  Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells , 2016, Journal of extracellular vesicles.

[3]  Umesh Gupta,et al.  Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs , 2015, Pharmaceutical Research.

[4]  A. Fernández-Medarde,et al.  Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[5]  Jörg Huwyler,et al.  Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[6]  Jaime Conceição,et al.  Nanotechnological carriers for cancer chemotherapy: the state of the art. , 2015, Colloids and surfaces. B, Biointerfaces.

[7]  F. Ungaro,et al.  Antitumor activity of PEGylated biodegradable nanoparticles for sustained release of docetaxel in triple-negative breast cancer. , 2014, International journal of pharmaceutics.

[8]  Xing-Jie Liang,et al.  pH-sensitive nano-systems for drug delivery in cancer therapy. , 2014, Biotechnology advances.

[9]  Christine Allen,et al.  Image-based analysis of the size- and time-dependent penetration of polymeric micelles in multicellular tumor spheroids and tumor xenografts. , 2014, International journal of pharmaceutics.

[10]  Aniruddha Roy,et al.  Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[11]  Yin Zhang,et al.  Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. , 2013, Biomaterials.

[12]  Kinam Park,et al.  Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. , 2013, International journal of pharmaceutics.

[13]  C. Allen,et al.  Multicellular Tumor Spheroids for Evaluation of Cytotoxicity and Tumor Growth Inhibitory Effects of Nanomedicines In Vitro: A Comparison of Docetaxel-Loaded Block Copolymer Micelles and Taxotere® , 2013, PloS one.

[14]  M. Alves,et al.  Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. , 2012, The international journal of biochemistry & cell biology.

[15]  K. Dawson,et al.  Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells , 2012, Journal of Nanobiotechnology.

[16]  P. Sriamornsak,et al.  Targeted therapy for cancer using pH-responsive nanocarrier systems. , 2012, Life sciences.

[17]  Bryan Hoang,et al.  Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells. , 2012, Biomacromolecules.

[18]  Y. Tsutsumi,et al.  Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells , 2011, International journal of nanomedicine.

[19]  J. Correia,et al.  Radiometallated peptides for molecular imaging and targeted therapy. , 2011, Dalton transactions.

[20]  N. Zhang,et al.  Docetaxel-Loaded Pluronic P123 Polymeric Micelles: in Vitro and in Vivo Evaluation , 2011, International journal of molecular sciences.

[21]  J. Correia,et al.  Mannosylated dextran derivatives labeled with fac-[M(CO)₃]+ (M = (99m)Tc, Re) for specific targeting of sentinel lymph node. , 2011, Molecular pharmaceutics.

[22]  Bryan Hoang,et al.  The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. , 2010, Molecular pharmaceutics.

[23]  C. Allen,et al.  Poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: synthesis, characterization, and the influence of the drug on micelle morphology. , 2010, Biomacromolecules.

[24]  C. Allen,et al.  Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[25]  M. Ghahremani,et al.  Docetaxel-albumin conjugates: preparation, in vitro evaluation and biodistribution studies. , 2009, Journal of pharmaceutical sciences.

[26]  Bryan Hoang,et al.  Noninvasive monitoring of the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. , 2009, Molecular pharmaceutics.

[27]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[28]  Leaf Huang,et al.  Pharmacokinetics and biodistribution of nanoparticles. , 2008, Molecular pharmaceutics.

[29]  Jinming Gao,et al.  Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. , 2008, Journal of biomedical materials research. Part A.

[30]  Christine Allen,et al.  In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  F. M. Gama,et al.  Self-assembled nanoparticles of dextrin substituted with hexadecanethiol. , 2007, Biomacromolecules.

[32]  V. Torchilin,et al.  Micellar Nanocarriers: Pharmaceutical Perspectives , 2006, Pharmaceutical Research.

[33]  C. Allen,et al.  Epidermal growth factor-conjugated poly(ethylene glycol)-block- poly(delta-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. , 2006, Bioconjugate chemistry.

[34]  C. Allen,et al.  Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. , 2005, Biomacromolecules.

[35]  Kwang Su Seo,et al.  Preparation of methoxy poly(ethyleneglycol)-block-poly(caprolactone) via activated monomer mechanism and examination of micellar characterization , 2005 .

[36]  J. Correia,et al.  Pyrazolyl derivatives as bifunctional chelators for labeling tumor-seeking peptides with the fac-[M(CO)3]+ moiety (M = 99mTc, Re): synthesis, characterization, and biological behavior. , 2005, Bioconjugate chemistry.

[37]  X. Lou,et al.  Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer , 2002 .

[38]  R. Schibli,et al.  Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [(99m)Tc(OH(2))3(CO)3]+. , 2001, Journal of the American Chemical Society.

[39]  Christine Allen,et al.  Nano-engineering block copolymer aggregates for drug delivery , 1999 .

[40]  Robert M. Endsor Living cationic polymerization , 1997 .

[41]  H. Burt,et al.  Determination of surfactant critical micelle concentration by a novel fluorescence depolarization technique. , 1996, Journal of biochemical and biophysical methods.

[42]  S. Feng,et al.  Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. , 2015, Biomaterials.

[43]  Numan Hoda,et al.  Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering , 2013 .

[44]  J. Correia,et al.  Melanocortin-1 receptor-targeting with radiolabeled cyclic α-melanocyte-stimulating hormone analogs for melanoma imaging. , 2010, Biopolymers.

[45]  Zong Li Determination of Critical Micelle Concentration by Ultrafiltration , 2001 .